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* L INTRODUCTION

This Final Report on AFOSR Contract F49620-77-C-0013 deals with

the perspective and main issues of the problem of shear-flow instabi-

lities and transition to turbulence as relevant to modern aerodynami-

cally conditioned technology. The objective is to provide a )feel.2 for

the instability phenomena and the transition field as a whole. 'Such

perspective should be especially useful when approaching questions of

further development and research in the field. The specialist who is

interested in the experimental and partly theoretical documentation of

these ideas, or in the details of important experiments of the past,

will find them in the associated Technical Report, a comprehensive

monograph entitled: "Guide to Experiments on Instability and Laminar-

Turbulent Transition in Shear Layers". Of necessity, the Final Report

must refer to the Guide for the substantiation of the statements and

viewpoints presented here. In a certain sense it can also be considered

as an introduction for the prospective user of the Guide.

Instabilities in turbulence

The knowledge of shear turbulence is still a rapidly developing

subject, even though it has been over a hundred years since turbulence

was identified by Osborne Reynolds. Modern instrumentation and data

processing opened up a new perception of turbulence a dozen years ago,

when conditional sampling of flows became possible. It turns out that

most of the so-called coherent turbulent structures (that emerged as the

key new concept beyond Reynolds averaging) originate during the last of

the sequence of instabilities. When the work on the Guide began late in

1976, such a relation between sequences of instabilities and turbulence

was merely a conjecture among a few specialists. The idea was first

stated publically, for the clearer special case of mixing layers, at a

NASA conference in 1972. It was becoming more evident, however, that

the unifying key to the mechanisms in the transition processes, as

Swithin turbulence itself, is the behavior of distributions of vorticity.
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The transition process is now identified as a sequence of insta-

bilities and restructuring of the rather homogeneous initial vorticity

distribution in the original laminar shear layer. Evidently the self-

interaction of the vorticity fields continues once the state of turbu-

lence, with its characteristic transport processes, has been estab-

lished. Instabilities have not ceased.

Forced transition and receptivity

These sequences are described, in terms as physical as possible, in

the 0.02 Sections of the Report. They are strongly conditioned by the

geometry of the shear layer and by the nature and strength of the flow

disturbances in the environment. The so-called "natural" transition

Qturns out to be "forced" or "controlled" by the specific environmental

disturbances in the through-flow systems prevalent in nature and tech-

nology.

The mechanisms whereby the external disturbances become inter-

* nalized as unsteady vorticity disturbances from which the restructuring

of the whole distribution grows are collectively characterized as the

receptivity of the shear layers. During the preparation of the Guide a

mode of receptivity to external unsteady pressure fields in boundary

* O layers was identified and documented by M. Nishioka and the author. It

is believed to dominate in external flows around shaped bodies. How-

ever, receptivity to ambient vorticity fields, the remnants of older

turbulence from upstream origins, remains one of the two most difficult

problems in transition. The other is the identification of the mech-

anism through which distributed roughness leads to transition. How

smooth does a surface have to be to remain laminar at high Reynolds

numbers, for instance in the highly accelerated regions of airfoils or

* circular cylinders?

Control of the nonunique paths to turbulence?

Instabilities arise because, as Reynolds number increases, the

* highly nonlinear flows possess many possible local vorticity configura-

tions. Nor is the specific sequence of instabilities for a given

"+(,10 .. . ., . ,+ ,.i' -'- Y ... '.- -- - - . - • - - ++ +' " " .
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geometry unique. Improved knowledge about the mechanisms of receptivity

and about efficient ways of tripping the layer should also make it

possible to modify for various pragmatic reasons the path of the evolu-

tion to turbulence. This implies partial control of the energetic

coherent structures, at least during the early stages of turbulence.

Such a surmise may seem more likely for free shear layers -- jets,

wakes, mixing layers. For these, the receptivity to unsteady pressure

gradients at the lines of separation, where the layers are born, is

* extremely efficient and can be used for control at distance across

streamlines. Whatever controlled unsteady vorticity is created at the

trailing edges becomes immediately amplified by the powerful inflec-

tional instability of the shear layer. This is a very effective com-

bination, which fuels most flow-conditioned acoustic resonances, includ-

ing organ pipes and destructive resonances in heat exchangers. Addi-

tional ways of influencing aero-acoustic noise of jets and the aixedness

in fuels may possibly be found in studying the control processes.

• Turbulence, after all, can be friend or foe, depending on zhe nature of

the objectives. Twenty people died in Sonora, PA from pollution effects

some thirty years ago when the atmosphere was not sufficiently turbu-

lent. And Prandtl showed the value of turbulence when he dramatically

* decreased the drag of a sphere by making its boundary layer turbulent.

Besides the obvious need for optimal tripping in boundary layers

(not yet mastered) to preempt laminar stall in its various guises,

controlling coherent structures in boundary layers may seem farfetched.

Yet, a tentative consensus is developing among researchers that the

turbulent boundary layers commonly studied in the laboratories do not

achieve sufficiently high Reynolds numbers to escape the heavy imprint

of the original mode of transition. The suspicion is growing that the

specific manner in which turbulent spots are seeded may lead to tur-

bulent skin friction which is not necessarily minimal. Since conducting

research and development tests on turbulent boundary layers at very high

Reynolds numbers runs into horrendous costs, it would be helpful if we

could age the boundary layers artificially, with confidence in the
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*generality of the results. Automated multidimensional traversing,

combined with state-of-the-art data processing, seems to make research

on the relationship between the topographics of transition and the

subsequent character of the turbulent boundary layer (especially the

evolution of its large-scale structures and skin friction) nearly at

hand. As of 1982 we can identify three distinct local geometries of

breakdown to turbulence in smooth laminar boundary layers on convex

bodies, but we know next to nothing about the seeding rates of turbulent

*spots. The thesis of Savas (1979) has unsettled past views on the

growth and interaction of turbulent spots; that topic should therefore

be part of any effort along the above lines.

Conceptual and theoretical background

As we discover more facets to the transition processes, many pre-

viously contradictory experiments become reconcilable in terms of hid-

den, previously unsuspected parameters. A researcher, interested in

*instability theory, may attack his problem with ad hoc assumptions,

facilitating the next difficult step forward, without worrying about the

overall harmony in the field or consistency with the sea of experimental

literature. For a critical interpreter of the body of experimental

*results, consistency of the overall framework of concepts stands as a

first prerequisite. Unexplained exceptions depreciate the reliability

of judgment in the context of transition. Examples of classes of tran-

sition for which we still do not have rational explanations are cited in

the missing-link Section 0.03.07.

Beyond that, two discordant strains from the general trend in

stability theory run through the interpretations of the specific cases

in the Guide. In fairness, it should be mentioned that the need for a

different view arose in studying through-flow systems like those in

Figs 0-la,b,c , most of which are characterized by a streamwise growing

scale 6 (x), and consequently by Re(x). To date, little theory aims at

these more complex systems.
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It is the experimental facts and recent numerical investigations

that force the author to stray from the fold. "irther progress in our

understanding seemed thwarted without the following working hypothesis:

There exist processes, rapid with respect to the normal flow evolution

which are identifiable as instabilities and yet develop without passingS
through an equilibrium. In fact, several competing instabilities com-

monly overlap spatially and proceed simultaneously in free shear layers

at higher Reynolds numbers. (At high Re, saturation has little meaning

until the free flow has gone through the instability on its largest

scale.) The numerical experimentation by Orszag and coworkers on duct

and pipe flows and the plane Couette flow also document the possibility

of instability in absence of an equilibrium. The instabilities in all

such cases are rapid, i.e. inviscid in nature.

The other partially discordant view is on the dominance in through-

flow systems of the role of environmental disturbances, as already

mentioned. The long standing paradox of early transition in wall-

confined through-flows cannot be explained except through finite initial

disturbances. In recent years, there have been some helpful theoretical

contributions on the associated linearized receptivity problems. In

fact, because in wall layers the initial instability is the slowest,

i.e. the rate-controlling bottleneck on the road to transition, quan-

titative linear theories constitute the chief tools for diagnostics and

whatever judicial estimates of transition situations we can make. Usage

of linearized computer codes, of course, has to be buttressed by theo-

retico-empirical qualitative understanding.

This qualitative understanding itself is based on the mathematical

structure of each problem and on associated detail experimental exper-

ience, the subject matter of the Guide. A glance at the subtitles in

the Contents will show the recurrent linkage between theory, concept,

and experiment. In particular, the 0.04 Sections illustrate the char-

acter of the available linearized information and its judicial applica-

tion. The collection of charts and their illustrated usage should

IV
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particularly benefit the development engineer as well as an engineering

graduate student. Although theoretical concepts of necessity enter this

report and the Guide, the reader need not understand all details at

first reading. It is hoped that the account is sufficiently descriptive

to provide the needed broader background of understanding. The theoret-

ically inclined reader, on the other hand, may also find some nuggets

for thought -- the challenge of critically appraised experimental

information.
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0 0.01 HOW TO DESCRIBE THE TRANSITION PROCESS?

There is no generally accepted definition of the onset of tur-

bulence in a flow; even definitions of turbulence itself differ. The

point of view adopted in the Guide rests on modern interpretations of

the classical concepts of turbulence, e.g. Liepmann (1979) and Lumley

(1981), and on the practical need for repeatable, operational identifi-

0 cation of the transition phenomena in the field or laboratory. Without

a consistent point of view, applicable to all the observations in

mechanically driven shear flows, there could be no sensible account of

these challenging phenomena.

0.01.01 Instabilities, onset of turbulence and its identification

As the Reynolds number increases in a given class of flows, the

continuously distributed vorticity in the base shear layer undergoes

successive instabilities, i.e. transformations into increasingly more

complex spatial and temporal patterns of vorticity concentrations. In

two-dimensional instabilities, the initial growth rate of the unsteady

vorticity is usually exponential even though the total vorticity is

preserved (like heat) during these essentially dehomogenizing processes.

At some stage of a sequence of instabilities, the dehomogenized, spotty,

three-dimensional flow becomes operationally indistinguishable from our

perception of classical high-Re turbulence as defined by four !MyM7

dromes: Stewart (1969), Tennekes and Lumley (1972, pp 1-3). Of the

four syndromes: irregularity (disorder), three-dimensional vorticity

(eddying), diffusion in excess of molecular transport (mixing), and

dissipation, the first three can be diagnosed by a careful experimenter.

Local onset of smaller-scale turbulent diffusion can often be identified

positively by visualization techniques.
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The irregularity syndrome - apparent randomness of motion - repre-

0O sents strange behavior in continuum mechanics and requires instrumenta-

tion capable of characterizing stochastic functions. Single sensors at

a point disclose broad-band spectra which testify to a sufficiently

large range of scales of motion in the turbulence (range of possible

cascades). In a sense, large range of scales represents a large number

of degrees of freedom in the fluid system, Liepmann (1979). Some re-

searchers call the disorder syndrome "chaotic behavior" and present in-

triguing evidence that even nonfluid nonlinear systems with large enough

0 degrees of freedom exhibit chaotic behavior in time; in fluid mechanics,

however, turbulence is not the only field that can be chaotic. In the

free stream of wind tunnels, Chapter 3, at least two sensors are needed

to separate random irrotational velocity-pressure fields (which reach

across mean streamlines) from the turbulent vorticity-velocity fields

(which, to the first order, are convected along mean streamlines).

Ideally, to document the transition process for a given flow, an

experimenter should (1) describe the salient features of the successive

instabilities (changes in vorticity patterns), and (2) identify the

local onset of turbulence by clearcut operational criteria based on as

many of the turbulence syndromes as possible. Ideally, to understand

the process we should (a) relate all the observed instability charac-

0 teristics to classes of solutions of Navier-Stokes equations or to

classes of solutions of admissibly simplified equations, and (b) clarify

the role of external disturbances and, when the role is deemed impor-

tant, identify the mechanisms through which the influence is exerted

(disturbance receptivity); see A.17 of the Guide.

It is the objective of the Guide to report on the current status of

the experimental evidence of transition processes and their conceptual

understanding for all the major classes of mechanically driven shear
V layers. Organized recognition of our shortcomings with respect to the

ideal described above, and discussion of their causes may perhaps pro-

vide a framework for further desirable focused research.

V.
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0.01.02 Plan of the Guide

Historically the motivation for transition research came from the

needs of practical applications. Fig 0-1 presents four schematic views

of some of the conditions which lead to transition in simpler external

and internal through-flow systems, in a mixed free-layer system, and in

a closed Couette flow system. The Guide will ultimately address all the

issues lurking in Fig 0-1, and more. For the present, the figure makes

clear that we should first examine instability and transition phenomena

* in order of increasing complexity and stress the generic aspects of each

case in order to build up a broad conceptual base. This is attempted in

Chapter 1 for free shear layers and in Chapter 2 for wall layers. The

conceptual aspects of the underlying differential equations - the basic

mechanisms of the phenomena - are sketched in Appendix A. An engineer

rusty on handling of complex notation and eigenvalue problems can refer

to Appendix B for illustration of the techniques on simplest instructive

examples.

* We study in detail, first qualitatively and then more quantita-

tively, selected evocative experiments from the research literature. In

Chapter 1 we first focus on the behavior of the simple laminar mixing

layers which illustrate many conceptual lessons. Various aspects of

* wakes, jets, and vortex rings are then taken up; at each step they pro-

vide reinforcement or contrast to the growing body of concepts. Case by

case, we also consider the idealizations which more or less satisfacto-

rily reproduce some of the features of the experiments. We note limita-

tions of both the experiments and theoretical models, and establish a

list of recurring research themes and controversial open questions. The

chapter ends with two thought-provoking experiments on instability in

free shear layers which are turbulent (!) at their origin.

40 The learning process continues in Chapter 2 with respect to wall

layers. A graduated series of experiments, across categories of flows

and instabilities, concretely illustrates key aspects and special

features of wall-conditioned instabilities and transition. Feedback

(a interaction between unsteady pressure gradients and vorticity is seen to

6J]
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account for the subtle viscous destabilization in inviscidly stable wall

* layers. Similarities and contrasts between cross-flow instabilities,

Gortler instability, and Taylor instability in Couette flow, and the

associated paths to turbulence are discussed in some depth.

Accounts of transition occasioned by discrete and distributed

* roughness, by laminar-turbulent bubbles, and by lateral (transverse)

contamination pose further difficult theoretical and conceptual ques-

tions. The last effect is related to the curious happenings called

turbulent spots, turbulent puffs, and turbulent slugs which coexist in

* close proximity with pristine laminar flow. The side-by-side coexis-

tence in such transitional flows of laminar and turbulent regimes in a

single system, as well as streamwise thickening of the shear layer, make

it difficult to characterize the state of shear-layer systems by state

variables appropriate for phase-space approach. (See Section A.19 for

illustration of simple two-dimensional and three-dimensional phase

spaces.)

The broad learning process concludes in Chapter 3 with otherwise

* inaccessible conceptualization of disturbances in the ambient fluid

environment and with discussion of receptivity experiments.

The genesis of the Guide harkens back to the author's rather con-

cise 1969 attempt to clarify transition phenomena in supersonic flows

* and to encouragement by Itiro Tani and Dietrich Kachemann to broaden and

supplement that "Critical Evaluation." However, after many revisions

the Guide deals principally with incompressible flows; the instabilities

associated with variable density as encountered in aeronautics are

*confined to Appendix A, Sections A.07, A.08, A.10-A.15, and Chapter 10.

Effects of stratification as contrasted with the effects of compressi-

bility are not covered in the Guide. Surface-tension effects and mul-

tiple phase phenomena are also beyond its scope.

*From the preceding account the reader should be aware of the cen-

tral role of the basic material in Chapters 1 - 3 and Appendices A and

B. With this broad background, the reader is prepared for the compre-

hensive presentation of detailed information and references on the

separate categories of flows in the subsequent chapters. The conceptual



framework, the themes, and the issues identified in the first part of

the book and Appendices A and B now provide a cohesive approach to an

otherwise bewildering variety of observations. Some of these observa-

tions are undoubtedly incomplete and even wrong. In a guide, comments

are appropriate concerning the degree of experimental rigor and reli-

ability of given investigations, tempered with realization of the

unusual experimental difficulties. Throughout we also insert sporadic

remarks on experimental pitfalls and procedur. occasioned by the

special nature of probing of potentially unstable systems. The spe-

cialized chapters in the more encyclopedic second part of the monograph

need not be studied consecutively. The last chapters return to appli-

cations: what perspective and philosphy have we gained from the study

of the simpler systems in the monograph?

The task of the Introduction is to provide a broad-brush perspec-

tive and a primary vocabulary for Chapters 1 - 3. It also includes

descriptive characterizations of key theoretical models and preliminary

comments on their correspondence with experimental conditions. An

engineer who wishes to understand instabilities needs some acquaintance

with the terminology and structure of relevant theories. One may then

appreciate the recent achievements in clarifying past contradictory

evidence on transition to turbulence in two-dimensional ducts as out-

lined in Section 0.02.06.

.. . . . .. . . .....'
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0.02 MAJOR CLASSIFICATIONS OF OBSERVED SEQUENCES OF INSTABILITIES

Many distinct features of shear layers govern the road to turbu-

lence, only some of which are evident from Fig 0-1. A given shear

system can in fact be classified in different overlapping categories.

The classification here emphasizes the nature of the sequence of

instabilities leading to transition; later we shall classify individual

instabilities according to their primary mechanisms, irrespective of

* their order in the sequence. We first describe the early evolution with

Re of three contrasting types of shear layers; this brings in naturally

some of the important classifications and terminology of bifurcation

theory and linearized theory. The more speculative Section 0.02.06 on

experiments in Poiseuille flows describes some difficulties in applying

the classical concepts and illustrates working hypotheses and viewpoints

which are used throughout the Guide to interpret the mass of often

confusing, at times contradictory, experimental information.

* A basic ccnceptual setting is essential to understanding of tran-

sition. Whenever possible it should have an underpinning of detail

theoretical treatment. The conceptual setting should be broad enough to

reconcile confirmed, seemingly contradictory experimental results. In

* 0.02 sections we focus on the conceptualization of the diverse sequences

of instabilities and examine their correspondence with key experimental

information. With the help of results from recent numerical experiments

we can probably "explain" hitherto paradoxical information on two-dimen-

sional Poiseuille and Couette flows if we allow a role for system dis-

turbances far more weighty than in the past. However, flow geometries

remain, for which conceptual links to the instability sequence and

transition have yet to be discovered.

V
" " """ """" - ""- " - . ". . . ,. , , .
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0.02.01 Instabilities and bifurcations
0

The range of phenomena covered in the monograph is commonly be-

lieved to be describable within the framework of the "compressible

Navier-Stokes system of equations" for mass, momentum, entropy (energy),

* and thermodynamic state, with scalar coefficients of viscosity and heat

conductivity, as defined, say, in Section 3.6 of Batchelor (1967).

(That section also describes the nature of approximations which yield

the useful idealizations of isentropic and incompressible flows.) It

* should be reassuring that the exceedingly complex instabilities we

glimpse in our visualizations and point-measurements should be comput-

able, at least in principle, from a known set of equations, henceforth

called the generalized NS equations. Few fields enjoy as solid a bed-

*rock of constitutive equations.

At any sufficiently low Reynolds number, Re, all solutions of the

NS equations for a given geometry tend in time to a single basic flow.

For instance, all unsteady flows around a steadily moving circular

* cylinder approach steady, laterally symmetric solutions such as por-

trayed in Figures 6, 24, and 40-45 of Van Dyke's Album (1982). Simi-

larly, however initially perturbed they may be, the velocity fields

powered by steady rotation -- of the inner cylinder in Fig 0-ld settle

* down to the unique Couette distribution:

u(r) R2 - r 2  R
2 1

= (0-1)*
2R1  R2 -R 2  r

2 1

Such unique low-Re basic flows are said to possess global stability.

At some higher Re values, the flow fields may converge to different

*equilibrium flows. Thus, in the first example the flows around cylin-

ders in the second range of Reynolds numbers converge to periodic,

laterally antisymmetric vorticity concentrations in the wake, decaying

slowly when x exceeds eight cylinder diameters (e.g. Fig. 97 in

*Van Dyke's Album). The steady, parabolically diffusing wake fields

remain solutions of the NS equations; they are unstable and

1*
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yield the stage to the unsteady, periodic vortex-street solutions.

Through the instability, the vorticity distributions become dehomo-

genized and unsteady, despite the steady symmetric boundary conditions.

The Couette flows, (0-01)*, no matter how carefully started,

develop into steady formations of annular Taylor vortices as the rota-

tion of the inner cylinder increases; see, for instance, Fig O-ld and

Figs. 127 and 128a of Van Dyke. As in wake vortex streets, through

instability the vorticity field here is dehomogenized into structures

with scales on the order of the shear layer thickness. However, the

spatial periodicity takes place in the spanwise rather than streamwise

direction and therefore does not bring about temporal periodicity. This

seemingly simple difference causes major differences in the evolution of

instabilities at higher Reynolds numbers between the classes of flows.

The new flows are again solutions of the nonlinear NS equations and are

said to have bifurcated from the basic-flow solutions. Even when we

specify the numerical value of the Reynolds number, mathematical descrip--

tions of details of the wake vorticity or of the counterrotating Taylor

vortices must rely on advanced computers. To be useful, the computer-

generated information must be stored in a priori selected graphical or

tabular representations, with pragmatic limits on accuracy.

At still higher Reynolds numbers, these new base flows in turn

become unstable and bifurcate into still more complex flows-solutions.

in wall layers the sequence of instabilities generally brings forth

vorticity nonhomogeneities with increasingly finer scales with respect

to the shear layer thickness. In free layers, instabilities may at

times also aggregate vorticity concentrations and thus increase scales.

At some stage of this parametric sequence (or branching sequences) of

instabilities the new flow becomes sufficiently three-dimensional,

diffusive, and irregular to be judged turbulent according to the syn-

dromes of Section 0.01.01. Solutions of NS equations automatically

satisfy the dissipation syndrome, of course. Viscosity also counteracts

the dehomogenizing effects of the instabilities, primarily at the finest

scales.

(A]
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Instabilities and bifurcations are associated with the fact that

0 for a given geometry, the number of possible flows-solutions of NS equa-

tions increases as Reynolds number increases. The number of scales (and

frequencies) in the corresponding vorticity distributions also increases

until the discrete wave-number or frequency spectra are augmented or

replaced by energetic continuous spectra, characteristic of the disorder

syndrome of turbulence. Sufficient evidence has accumulated in recent

years showing that instabilities, i.e. restructuring of the vorticity

distributions with new scales, continue to take place within the turbu-

lent fields. On the largest scales, their presence is reflected in the

emergence of so-called coherent turbulent structures. On the smallest

scales, they represent a plausible model for the occurrence of fine-

scale intermittency which led Kolmogoroff to reconsider his universal

similarity theory in 1962. The propensity of even turbulent flows

separating at sharp spanwise edges to couple with pressure oscillations

may at times make the unstable coherent structures more regular and

potentially destructive; see, for instance, Rockwell and Schachenmann

• (1982) whose fully developed turbulent pipe flow discharged through an

annular cavity and led to a violent nonlinear instability built up

through pressure feedback from the circular edge closing the cavity.

Thus the concept of instability within turbulent flows has technological

implication and can be extended empirically to the concept of control,

as in playing of pipe organs.

The discussion in this section started with the idea of an orderly

very slow variation of the basic parameter, Re. However, the start-up

btime or distance for the shear layer may be very short. Thus a circular

jet issuing from a high-pressure nozzle is born at a high Reynolds

number whether Re is based on the thickness of the thin separating

boundary layer at the lip of the nozzle or on the diameter of the ini-

tial vorticity sheath; see Fig 0-1c. This jet offers an especially

clear case where there are many competing instabilities taking place

simultaneously at different rates and scales, with different symmetries

and asymmetries. Here, and in the case of many secondary and tertiary

. . ..b . . .
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instabilities, it is difficult, if not impossible, to speak of true

sequences of equilibrium flows and pure instabilities. Furthermore, the

instability evolution in any realization of the f!Dw depends on the

relative strength of the initial disturbances which feed the different

instability modes. Rapid restructuring of the vorticity distributions

there is, indicative of instability phenomena, but the relevant equili-

brium flows in the bifurcation approach remain elusive.

0.02.02 Linearized NS equations and theoretical Re
cr

One commonsense diagnostic test for stability of a solution-flow is

to try to provoke its bifurcation to a new equilibrium solution-flow by

introducing special testing disturbances. If at a given Re some vanish-

ingly small disturbances can grow to finite amplitudes and thereby

change the original base solution-flow, that solution-flow is said to be

linearly unstable. It can be shown theoretically that in nonpatho-

logical cases, linearly unstable solutions correctly mimic the initial

behavior of the nonlinear solutions. Mathematically, the test involves

NS equations for the perturbations, linearized with respect to the base

flow. The designation "vanishingly small" or "infinitesimal" implies

that terms in the disturbances of higher than first power are initially

negligible. The simplifications in having to solve only linear differ-

ential equations are enormous, even though it took decades to understand

their asymptotically singular behavior for wall flows. In particular,

hi for parallel base flows such as the two-dimensional Poiseuille flow, the

critical value, Recr, above which some infinitesimal disturbances grow,

can now be readily obtained on a computer. Three examples will illus-

trate the critical and postcritical behavior.

(1) Circular Couette flows, (0-)*, of infinite axial extent,

driven solely by the rotation of the inner cylinder of radius R1 , i.e.

with V =0 in Fig 0-1d, are linearly stable for Re = V(R 2-R)/v < Recr,

with Re = 94.7 when R1/R2 = 0.8 and Re = 185 when R /R = 0.95; seecr cr 1
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DiPrima (1981). In experiments, the boundary conditions at the end

faces of the apparatus introduce z dependence of the basic flow. But

this departure from strictly parallel streamlines has minor effects on

the onset of instability when Re increases gradually. Except for a nar-

row range around Re , experiments disclose steady nonlinear Taylorcr

vortices, such as in Fig 0-23a, once Re values exceed Recr

(2) Parabolic velocity distributions

U h )2; h=duct half width, Uc=centerline velocity 0-_

c

in two-dimensional ducts of infinite extent in the spanwise z and

streamwise x directions are similarly stable with respect to arbitrary

infinitesimal disturbances for Re = U h/ < Re = 5772. Damped pre-c cr

critical and amplifying postcritical linearized solutions were studied

extensively, analytically and numerically. However, most authorities

*considered them physically unrealizable because until the experiments of

Nishioka, Iida and Ichikawa (1975) all experimentalists lost laminar

flow before reaching Reynolds numbers in excess of 5500, short of Recr

Unless special care is exercised, transition may set in at Re values as

* low as 1000. Figure 0-4 of Carlson & WP (1982) displays a so-called

turbulent patch generated by an artificial disturbance at Re of 1000.

In the experiments of Carlson & WP, "natural"--i.e., spontaneous spots

without the experimenters' intervention--commonly occurred at Re of

about 1200. Obviously, we need to seek the physical and mathematical reasons

for the stark contrast in behavior of these Poiseuille flows vis-a-vis

the Couette flows (1).

(3) The linear Re for even the idealized uniform two-dimensional
cr

viscous flow around a perfect, smooth cylinder of infinite span remains

uncertain.

The only computations we have for (3) are for strictly parallel

base flows with empirically fitted wake velocity-defect shapes such as

exp(-ay ) in Wazzan & OK (1973) . With b defined as the crossflow

distance y at which the velocity defect reduces to half its centerline



value, modern computers yield critical values of 2bU-/, , sliqhtly

higher than 10, Wazzan & OK, and between 1 and 2, Nakaya (1976).

The fact that the base flows used in the wake approximations do not

solve the NS equations probably depreciates the results per se less than

the assumption of parallelism. Base streamlines, unchanging with x, do

not fit the crucial initial conditions near the cylinder (or, for that

matter, those near thin trailing edges of plates or airfoils). Recep-

tivity to disturbances (see Sections 0.01.01 and A.17) as well as the

initial spatial amplification characteristics of the wake are dominatede
by the conditions at and near the cylinder. However, to take such

conditions into account is beyond the current state of our analytical

and numerical techniques. At present, the search for at least approxi-

mate guidelines leads us to reduce the spatial dependence of the base

flow properties to the sole cross-flow variable y, as was done by

Wazzan & OK and Nakaya. Base flows with exact NS solutions dependent

solely on y will be called purified flows.

We note that among the real flows of Fig 0-1 only the class of

rotating flows (d) (without an upstream or downstream) falls strictly

into the purified category and then only if we allow for an infinite

axial extent.

0.02.03 Experimental linear Re and the role of disturbancescr

For the flow around a circular cylinder, experimentalists often

define a "spontaneous Re " as that Re for which the near wake ceases tocr

be symmetric and/or starts amplifying "spontaneously" in their facility.

While "spontaneous Re " values from 35 to 60 have been reported,cr

depending on the finite span-to-diameter ratio, free-stream distur-

bances, slight mean-flow nonuniformity, vibrations, etc., values between

40 and 50 are commonly observed. Do free-stream disturbances

and minute cylinder vibrations qualify as "vanishingly small distur-

bances" for the diagnostic test of linear instability? To qualify, the

excitation should include the least stable (or the most unstable)
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motions -- antisymmetric vorticity distributions in the critical fre-

* quency band in the present case. Furthermore, as the excitation inten-

sity is reduced to zero, the amplitudes of the observed fluctuations

should decrease proportionately toward zero. This requirement makes

certain that the response does not have a nonlinear threshold. In a

*threshold response, no amplified motion in the band of dangerous fre-

quencies would be sensed for excitations up to a finite, if small,

amplitude.

The only published careful diagnosis of this type for the cylinder

*Q flow is presented in Fig. 6 of Nishioka and Sato (1978), reproduced here

as semi-logarithmic Fig 0-2. Cross-flow cylinder vibrations of ampli-

tudes of 4 and 8% of the cylinder diameter (d = 2mm) are seen to induce

proportionate, initially exponential amplifications in the streamwise x

direction at a Reynolds number of 30, well below their lowest Re of

"spontaneous" amplification, 48. We note that at higher Reynolds num-

bers the leveling of curves, such as seen in Fig 0-2 for x/d > 8, would

usually be ascribed Lo nonlinear effects. Here the relatively low

amplitudes and the unusual continued near-proportionality of the lower

curves suggest viscous dissipation and frequency detuning (as the mean

streamlines broaden) as the likely causes. Judging by the altogether

declining curve for the vibration amplitudes of 0.15d, nonlinear stresses

Sand a substantial change in the mean wake were probably responsible for

the decay here. Whatever the interpretation of the behavior for larger

x , the feature of importance to the test is the proportionate exponen-

tial growth of the two lower curves.

A priori, a distinction is in order between the theoretical test in

which the perturbation represents the self-excited solution of a homo-

geneous linear system and the experimental test for which the small-

amplitude response in Fig 0-2 is forced or driven by the nonhomogeneous

boundary conditions at the vibrating cylinder. The driven solution con-

sists of a linear superposition of some particular solution and homo-

geneous solutions, which together satisfy the appropriate initial and

boundary conditions. The validity of the experimental tests rests on

4 the assumption that in the driven solution, the particular part of the

|.I
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response becomes dwarfed by the exponentially growing, homogeneous part

of the response. Both cases should then lead to consistent results

because the instability is judged by the growth of the homogeneous

solution alone. Still, the difference is interesting: in the experi-

mental test the amplitude of the homogeneous component is determined by

the vibrator, while in the theoretical test the amplitude remains arbi-

trary. (We recall that in real flows, determination of the amplitude of

the homogeneous component constitutes the essence of the problem of

receptivity to any given class of physical disturbances.)

Since "spontaneous Re " depends on environmental disturbances, thecr
"spontaneous self-excitation" should also be a "driven response" due

mainly to free-stream vorticity and pressure fluctuations. (For addi-

tional discussion of these superficially contradictory terms, see

Section A.17.) Experimentally for Re < 100, there is no doubt that

external acoustic pressure excitations indeed induce exponentially

growing wake fluctuations, initially proportional to the driving ampli-

tude of sound. This proportionality is understandably more difficult to

demonstrate for the effect of free-stream turbulence.

In the light of the preceding discussion, the experiments of Nish-

ioka and Sato (1978) and Fig 0-2 imply that Re in the sense of lin-cr

earized NS equations is somewhat below 30 for the cylinder flow, evi-

dently distinct from their "spontaneous Re " of 48. Why should therecr

be a difference? Assuming, as is reasonable, that the measurements

leading to the data of Fig 0-2 exclude the probability of a threshold

effect at lower amplitudes, we must look to the uncontrolled environ-

mental disturbances for a consistent explanation. Below Re of 48 the

given low-Re facility may not have contained any asymmetric disturbances

in the dangerous range of amplifiable frequencies. Or if they were

present, their amplified response must have remained below the level of

detectability of the experimental technique. Because of the importance

of the concept of the linear Re cr further independent experimental

elucidation of the details of the wake responses below the "Re of
cr

.9 spontaneous amplification" seems highly desirable.

IL
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*Returning to statement (3) in Section 0.02.02, the wide spread of

inferred values of linear Re (from 1-2 of Nakaya to 10+ of Wazzan &cr

OK, to 30- of Nishioka and Sato, to 40-50 of most of the "spontaneous"

amplifications) illustrates the uncertainty in cases of substantially

*nonparallel flows, subject to mixtures of environmental disturbances.

On the other hand, the substantial nonparallelism may simultaneously

mitigate the postcritical impact of the instability on the flow field

-- by sharply confining its domain in x; see comments on the leveling

*and decay of the fluctuations in Fig 0-2 in this section. There is

evidence, Desruelle (1983), that from the "spontaneous Re " to Re ofcr

90-100, the fluctuations in the cylinder wake simply decay without

further instabilities in x, presumably because of combined effects of

nonlinearity, viscosity and nonparallel detuning. Such detuning does

not occur in the purified cases of circular Couette flow (1) and two-

dimensional Poiseuille flow (2). Prediction of this qualitative differ-

ence in unstable behavior is beyond the power of current bifurcation

*analyses which cannot handle nonparallelism in the streamwise direction.

*Note 1 Two recurrent themes. Two ideas in Section 0.02.03 become

recurrent themes throughout the Guide. The first was illustrated in the
interpretation of the Nishioka-Sato Fig 0-2 and of the nature of the

* "spontaneous Re " in the flow around circular cylinders. The view of
the manner in w fch observed, exponentially growing fluctuations in the
initial linearizable regime of instabilities can be proportional to
small external disturbances is generally applicable. It constitutes an
important tool in our pursuit of objectives (a) -and (b) in Section
0.01.01. The second is the need for awareness of the possibility that
substantial differences from commo n expectations may take place in
qualitative precritical and postcritical behavior in streamwise non-
parallel flows. Streamwise variation of Reynolds number based on shear-
layer thickness may modify the criticality of instabilities.

0.02.04 Bifurcation theory: characterization and vocabulary

What in the NS equations could account for the strikingly different

postcritical behavior in the three flows discussed in the preceding sec-

tions? In our quest for Re and the locally most amplified solution,
cr

often called fundamental, we discarded all powers in the disturbance
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fluctuations beyond the first. If, by cleverly operating on the NS

Sequations we manage to obtain a differential equation in higher powers

of a single suitably defined nonlinear amplitude A(t) associated with

the fundamental mode, could the resulting so-called weakly nonlinear

equations discriminate between the different postcritical behaviors?

OThe answer is a qualified yes when we restrict ourselves to purified

(parallel) flows like the Couette flow (1) and the two-dimensional

Poiseuille flow (2) in Section 0.02.02. Generally, inclusion of terms

up to and including third power can characterize the dominant trends of

*the nonlinear interactions of the fundamental solution (a) with the mean

flow (base-flow distortion), (b) with its second harmonic (usually loss

of energy), and (c) with itself (shape distortion, saturation).

In his descriptive 1971 review Stuart discusses the Couette and

Poiseuille flows as prototypes of nonlinear behavior in rudimentary

supercritical and subcritical bifurcations, respectively. In the Guide

the adjective rudimentary refers to bifurcations for which the solutions

remain adequately characterizable by a single measure of intensity (or

* energy), the amplitude A(t), after the bifurcation. (It is not

commonly used in the literature but is needed inter alia to clarify the

nature of possible secondary bifurcations in Poiseuille flow, Section

0.02.06.) Subcritical bifurcations are occasionally called inverted

* bifurcation for reasons clear from the contrast in sketches SkO.02.04a

and SkO.02.04b of two rudimentary bifurcations. At a given Reynolds

or Taylor number the heavy lines in these diagrams represent stable

equilibrium solutions of the homogeneous equations, characterized by the

single amplitude A(t) as t- . (The Taylor number, T=2Re 2(R 2-RI)/(R2+R1
is preferable to Reynolds number when Couette flows with different radii

are compared.) The dashed lines indicate unstable equilibria; the

arrows mark the direction of evolving solutions of the homogeneous

system of equations. The unperturbed basic flow corresponds to A = 0,

the ORe axis, of course.

In rudimentary subcritical systems, instability can occur for

Re < Re when the perturbations exceed the threshold represented bycr
Ithe dashed curve BRe in SkO.02.04a. In the domain to the left of

cr

ILI
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Rei 2 D (the minimum Reynolds number of instability of the fundamental

mode) "one expects that the basic flow is globally asymptotically

stable," Drazin & Reid (1981, p 374). In the domain of conditional

instability, Rei 2D < Re < Rer, the perturbation amplitudes should
min2D cr'

either decay to nothing or evolve and converge to a new stable equili-

brium along BC. We shall explore in Section 0.02.06 how well this

prototype of subcritical behavior matches experimental information on

Poiseuille flows with unavoidably finite spans and axial lengths.

In systems with rudimentary supercritical bifurcations, Sk0.02.04b,

all perturbations decay for T < T and evolve toward the new stablecr

flow configuration for T > T . Weakly nonlinear approximationscr
(among other methods) indicate that the Couette flow with infinite span,

driven by rotation of the inner cylinder, bifurcates supercritically.

This agrees quite well with the previously described experiments with

large spans. Except for some unsteadiness and spanwise nonuniformity,

Taylor vortices appear near the T value computed for infinite axial
cr

length when the speed of rotation is increased very gradually. (For

further qualifications see next section.) As indicated in Sk 0.02.04b,

the Couette supercritical system experiences another bifurcation from

the new equilibrium, always for T values to the right of T . In the
cr

laboratory it leads to periodic wavy vortices; see Fig 0-23b here and

Fig. 128 in Van Dyke's Album.

More generally, bifurcation theory studies the qualitative charac-

ter of the nonlinear solutions as the system parameter is made to

approach and pass a bifurcation in the solutions. While the critical

value of the parameter may be determined from local linearization, the

qualitative changes in the solutions at that bifurcation depend on the

nonlinear structure of the equations near Re . The approach through
cr

weakly nonlinear ordinary differential equations for the amplitude is

only one of the simpler techniques of bifurcation theory; see pp 370-379

and 402-420 of Drazin and Reid (1981) for a broad heuristic introduction

to the subject and its nomenclature. The richness and diversity of

solutions of nonlinear equations generally call for powerful and often

U very abstract techniques. It is therefore not surprising that there

i O
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exist more complex configurations of equilibria at a bifurcation. Here

we are concerned primarily with acquiring concepts, such as that of the

threshold amplitude and saturation, which could help us interpret

puzzling experimental behavior in flows of Fig 0-1. Because experiments

are always performed in confined spaces we first need to inquire what

modifications in the bifurcation behavior, say that of Sk 0.02.04b, take

place when finite lengths are introduced in the theory.

0.02.05 Imperfect bifurcations; circular Couette flow

As mentioned in Section 0.02.02, the solutions of the base Couette

flow with finite spans acquire z dependence, which can be considered

as "an imperfection" in the idealized uniform flow (0-01)* in

Section 0.02.01. Generally, for large span-to-gap ratios, the z

dependence can be replaced by a new small parameter E , a suitably

weighted measure of the departure from uniformity. The theory of

imperfect bifurcations then suggests that for small e the locus of the

stable solutions in Sk 0.01.02b should shift from the solid curves to

the neighboring dotted curves, labeled pr and sec. The small nonzero

amplitude A at moderate Taylor numbers along pr characterizes --he

fact that weak vorticity structures, "shadows", are built up even at

slow rotations by the boundary conditions at the end faces. There is a

rapid but continuous change in amplitude in the proximity of T as Tcr

increases gradually; this corresponds to the previously described

observation of the changeover to the developed Taylor cells over a
narrow band around the critical value of the parameter.

Near T cr, linearized NS equations for the infinite span yield a

specific wavelength . What happens when the finite span S doescr

not match n ,cr, the closest integral multiple of the ideal wavelength?

As T increases gradually at subcritical values, the forced viscous

effects of each end plate spread toward the middle on the diffusive time

scale, S/(vt) . For large span-to-gap ratios, the widths of the two

end cells generally accommodate most of the difference S - nX as T
cr

slowly passes Tcr. However, for a given S, this gradually evolved
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vortex pattern, called primary, is not a unique steady solution of the

* NS equations with no-slip boundary conditions. For instance, at a

Reynolds number of 359 and a moderate span-to-gap ratio of 12.61, photo-

graphs in Figure 1 of Benjamin and Mullin (1982) demonstrate fourteen

additional stable vortex arrays. The number of vortex cells ranged from

* 8 to 18! In 9 of the vortex arrays one or both end cells rotated in an

anomalous fashitn, the particles in the boundary layers of the rotating

end walls spiraling outward rather than inward. Ten of the NS solutions

were obtained by modifying the time history of the boundary motions,

* i.e. through fast programmed starts. The other four states were estab-

lished at an aspect ratio different from 12.61 and then compressed or

stretched by careful adjustment of the span. The authors believe that

there are at least 39 solutions satisfying the same boundary conditions

when unstable equilibria are included.

All such postcritical Taylor-Couette flows cannot fit the dotted

imperfect bifurcation loci in Sk 0.02.04b. It can be reasonably argued

that the continuous dotted curve starting at T = 0+ should correspond

* to the primary flow which evolves during gradual changes in T. How-

ever, Benjamin and Mullin caution against the automatic asumption that

"the experiment simplifies progressively as the span-to-gap ratio is

made larger, leaving only a residual perturbation from behavior accord-

* Oing to the infinite model," and ,upply a number of reasons for caution.

At the level of sophistication of this chapter, the B & M experi-

ment teaches us that even at tr-he fLst bifurcation the multiplicity of

the solutions may lead beyond the dimensionality of rudimentary bifur-

cations portrayed in Sk 0.02.04b. The secondary imperfect solution

labeled "sec" in Sk 0.02.04b, though correctly inaccessible through slow

variation of T, cannot correspond to all the other 14 stable solutions.

By itself, the physical demonstration of 15 stable solutions should

alert our intuition concerning possible happenings in problems governed

by nonlinear NS equations. One virtue of the purified problems is that

some properties can be proven and physically observed, where they

probably remain camouflaged by the variation in the governing parameter

in nonpurified systems.

IV
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0.02.06 Interpretations of experiments on Poiseuille flow

If the introduction of a finite length into a stably evolving

supercritical system can lead to the diversity of Benjamin and Mullin

(1982), what can we expect when finite span S is introduced in the

subcritical two-dimensional duct problem, idealized in Sk 0.02.04a?

Since along Re B the equilibria are unstable, multiplicities of solu-cr

tions may be altogether unobservable if the instabilities develop

rapidly. The a priori hope would be that the essence of the threshold

behavior, associated with Re B, would remain as a diagnosticallycr

recognizable feature. The customary interpretation of the experimental

evidence on Poiseuille flow has been that, in all the more careful pre-

1975 experiments, the disturbances still surpassed the then ill-defined

threshold Re B. According to Herbert (1981, Fig. 3), if the mostcr

dangerous disturbances remained two-dimensional and characterizable by a

single amplitude, the flow would evolve to a stable equilibrium corres-

ponding to a point on BC in Sk 0.02.04a. In all the pre-1975 experi-

ments (described in the introduction of Carlson, Widnall, and Peeters,

1982) there was inadequate identification of the disturbances and the

nature of the instabilities. The fluctuations, however, were clearly

three-dimensional and irregular, so the experimental loss of laminarity

was construed as a necessary consequence of the inverted bifurcation.

Most theoreticians believed that the unavoidably nonvanishing distur-

bances in real duct flows would always cause the system to cross the

dashed threshold line in Sk 0.02.04a and "snap through" to a "turbulent

equilibrium" before the Reynolds number could become supercritical.

Is it possible to amend these views to explain the ability of

Nishioka, Iida, and Ichikawa (1975) and Kozlov and Ramasanov (1980) to

reach supercritical laminar flow in channels with low but finite free-

stream disturbances? A tentative reconciliation is presented below,

with the aid of results of both numerical experiments and weakly non-

linear theories of special secondary instabilities by Herbert (1981a)

and Orszag and Patera (1981a). Herbert's remarkable analysis rather

/' - . -i .i . . . . . ' o , , . . i ' - i .i ,. .



27

convincingly interlaces past and current information, including addi-

* tional experiments on details of induced subcritical instabilities by

Nishioka, lida, and Kanbayashi (1978) and Nishioka, Asai, and Iida

(1980) and (1981). Here we focus on three specific issues crucial to

our understanding of Sk 0.02.04a and initiation of turbulence: (a)

*Nishioka's laminarity at Re of 8000 (occasionally up to 9000);

(b) the likely nature of evolution of fluctuations above the curve

Re B; and (c) the possible theoretical explanations of existence of
cr

turbulence at Re below Re observed in noisier experiments.min2D

* (a) Absence of turbulence for Re > Re . As Fig 0-lb informs us,

except for possible pressure disturbances propagating upstream from the

exit, the external disturbances arrive from the blow-down region of the

Poiseuille facility strongly reduced by honeycombs, screens, and con-

it traction. In large-aspect ratio ducts, the boundary layers in the

accelerated entrance region are more stable than the fully developed

Poiseuille flow. Small vortical disturbances, such as those measured by

Nishioka & II (1975), with streamwise r.m.s. fluctuation u' on the

* order of U c/10,000 near xFD' may then grow spatially up to the end of

the channel, xE. Thus the explanation hinges first on the magnitude of

the spatial growth rates of disturbances at Re of 8000, induced by

external disturbances near xFD; see Section 0.02.03, including *Note 1.

* According to Itoh's 1974 theory of spatial linear instability, the

growth rates in the narrow amplified spectrum at Re of 8000 are rather

low. It is reasonable to assume that the initial amplitude of the

induced disturbances in the most amplified frequency band does not

exceed u'/100. A total amplification factor of 10,000 would be required

to generate a fluctuation on the order of U c/100, empirically the

earliest likely level for the onset of nonlinear effects. The hot-wire

evidence of Nishioka & II and Itoh's theoretical results indicate that

the channel indeed ended before instabilities could build up into turbu-

lence. At Re of 9000 the amplified band is broader and its amplifica-

tion rates higher; accordingly, the runs remained laminar only spora-

dically, when the environment in the through-flow system was especially

LO quiescent.

h
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As with the "spontaneous Re " in Section 0.02.03, experimentalcr

observables depend on the spectral composition and level of disturbances

in the environment, as well as on the receptivity of the shear layer to

these disturbances. Had Nishioka designed a considerably longer chan-

nel, Re still may have been surpassed, but only if the mix of the• cr

forcing external disturbances were such as not to induce any homogeneous

solutions in the narrow band of amplified frequencies. For the purified

problem with infinite channel length, minutest disturbances initiated at

the molecular level - Brownian motion, thermal fluctuations - would

presumably always be sufficient to initiate the amplified homogeneous

solutions and preclude a supercritical laminar flow; see Jhaveri and

Homsy (1980) for related excitation by Brownian motion of convective

instabilities in fluid layers heated from below. In systems of techno-

logical interest, macroscopic environmental disturbances, Fig 0-la,b,

invariably induce the instabilities.

(b) Three-dimensional instabilities with threshold behavior.

For Re <Re the locus Re B in Sk 0.02.04a corresponds to neutralcr cr

two-dimensional, periodic, progressive wave solutions of the homogeneous

NS equations with finite amplitudes A (Re). If we could artificiallyn

induce this mode of motion with an amplitude A+, infinitesimally larger

than A (with no other disturbances present), the motion would evolve,n-

at first very slowly, toward a two-dimensional stable periodic equilib-

rium motion characterized by A2 on the locus BC. In other words, the

artificially excited solution would transcend the threshold of Re Bcr

and saturate on BC.

A thin ribbon, say 0.05mm thick and 40mm wide, stretched across the

flow span at some height y and vibrating with the most dangerous

frequency at the given Re, would elicit a forced response similar to

that caused by the vibrations of the cylinder in Section 0.02.03.

(40 Again, the response associated with the particular solution would be

expected to decay relative to the response associated with the dangerous

homogeneous solution. A hot-wire probe, situated at a downstream posi-

tion x , would then sense the characteristics of the homogeneous solu-p
%tions and could document the possible threshold nature near Re B as

cr

• 4 - . . -. . . . .. . ,%
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the amplitude of the vibrating ribbon is increased. This technique was

originally devised by Schubauer and Skramstad (1944) for their epoch-

making studies in boundary layers. It was applied successfully by

Nishioka and his coworkers, 1975-1981, to explore extensively the linear

and nonlinear, subcritical and supercritical behavior of the progressive

wave solutions, and to demonstrate their threshold character at

Re = 5,000.

In the thought experiment above, the disturbance from A to A+n
was strictly two-dimensional. It was also two-dimensional in the cor-

0 responding weakly nonlinear spatial theory of Itoh (1974a) with which

Nishioka & II compared their results. However, despite utmost care in

the design of their facility and vibrating ribbon, Nishioka and II found

small but increasing three-dimensionality of the mean flow for Re in

excess of about 3000 (their Fig. 2). Consequently the unsteady distur-

bances driven by the ribbon were also slightly three-dimensional. In

view of the slowness in the early evolution of the two-dimensional

solution away from the unstable equilibrium Re crB, Herbert (1981)

investigated whether some three-dimensional perturbations might not grow

more rapidly and make the subsequent development intrinsically three-

dimensional.

In accordance with Section 0.02.01, the present base flow must

consist of the sum of the parabolic Poiseuille velocity field and the

neutral progressive-wave solution, characterized by the finite A alongn

Re B. A vanishingly small progressive wave solution of the same fre-cr -

quency, but with wavefronts skewed at an angle tan (B/a) with respect

to the spanwise z direction is added as the testing perturbation. The

resulting system of linearized NS equations (see *Note 1 at end of (b)

and Section 0.04.03) was solved numerically to yield the dimensionless

growth rates a in the coefficient exp(at) of the perturbations.

S A sample of these rates a for the streamwise wavenumber

a = 27/A = 1 of the neutral progressive two-dimensional waves is shown

in Fig 0-3a as function of the spanwise wavenumber 6 and different

amplitudes u' = A n/2 (nondimensionalized with respect to U c ) along

the locus of unstable equilibria Re B. When Re is subcritically
cr

S
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close to Re , A and u' are small. All three-dimensional pertur-
cr n m

*bations, irrespective of orientation are then exponentially damped. For

us > 0.94 (i.e., for less than 1% of U !) an increasingly wider 8mn c

family of three-dimensional waves can grow at increasingly faster expo-

nential rates U . It would appear that the 3D disturbances could indeed

S"run away" from the slowly growing 2D disturbances if u' is largem

enough. Furthermore, as Fig 0-3a discloses, the 3D components also

experience a threshold effect, grafted on top of the 2D threshold along

Re B.cr• When the experiments of Nishioka, Iida, and Ichikawa were under

way, only the 2D threshold effect was theoretically anticipated. By

1980 there existed at least three independent, spectral computer codes

(e.g. Orszag and Kells, 1980) capable of credibly simulating temporal

revolution of the nonlinear NS solutions for duct flows with streamwise

and spanwise periodicity. At the suggestion of Herbert, Kleiser (1982)

used one of the codes (Kleiser and Schumann, 1979) for numerical experi-

mentation in the regime of parameters of the experiments of Nishioka & II

(1975), specifically for = 1.12 and Re = 5000. The computed neutral

amplitude u' on Re B then is approximately 2.5%. Starting withm cr

the initial conditions: u' = .0212 for the fundamental, zero for its
m

second harmonic, and .0007 '" for the r.m.s. amplitude of the 3D distur-

bance wave with 6 = 2.1, Kleiser obtained the results plotted semi-

logarithmically in Fig 0-3b. AlUtough the fundamental was displaced

from the neutral locus and it lost energy to its initially spurting

second harmonic, both fundamental and harmonic developed v-ry gradually

thereafter. The 3D wave at first excited an6 interacted with an x-

independent streamwise vortex. Subsequently both these 3T .ocles grew

exponentially with nearly the temporal rate a = 0.0484 predi-ned by

Herbert's linearized 3D theory described above.

Kleiser's nonlinear simulation indicates two more qualitative

changes of behavior, at dimensionless times t of 100 and 120. These

are interpreted in Chapter 2 of the Guide. For present purposes,

Kleiser's nonlinear NS computations, Herbert's 3D perturbation of

Othe 2D threshold level, and the Nishioka & II experiments all

" 't ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ M A Ad~' ' ' '"" .. . - " ' " " " d" " " T
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suggest that 3D instabilities near the subcritical neutral branch are

most likely, if not inevitable. According to Sections A.01 and

0.03.05, three-dimensionality at finite amplitudes brings forth a power-

ful vorticity generating mechanism inherent in the nonlinear term

(2) w-.grad(V), in 7Lquation (A-4)*. Thus Herbert's instability contrasts

fundamentally with two-dimensional instabilities which principally

dehomogenize but conserve total vorticity. We can therefore expect

further instabilities and faster approach to turbulence. In fact, this

type of three-dimensional instability represents a prototype for many

secondary instabilities.

Basically, the preceding account provides specific, highly probable

guideposts for the road to turbulence from the neighborhood of Re Bcr

in Sk 0.02.04a. It concretizes the earlier vague expectations of

"snapthrough instability," which were influenced by structural analo-

gies. Once disturbances become finite, the lack of local constraint in

cross-stream and streamwise directions makes flow fields susceptible to

a variety of three-dimensional growths not generally met in other

branches of continuum mechanics. It would seem that qualitative theo-

ries of instabilities and dynamical systems would have to take account

of this essential propensity to three-dimensionality in fluid motion to

begin to characterize the evolution of turbulence and turbulence itself.

For Poiseuille flows, perhaps even more than for the Benjamin-Mullin

Couette flows in Section 0.02.05, the rudimentary bifurcations simply

cannot portray the multiplicity of possible outcomes.

*Note 1 Parametric instability. When NS equations are linearized

with respect to a base flow, velocity profiles of the base flow and
their derivatives generally appear as variable coefficients in the
differential equations for the perturbations. The base flows in Her-
bert's 3D perturbations include periodic progressive waves with finite
amplitudes. Hence the homogeneous system has some terms with periodic
coefficients. Such systems are often described as leading to parametric
instabilities or subject to parametric excitation or parametric reso-
nance. Important prototypes of ordinary linear differential equations
with periodic coefficients are the Hill equation and its special case,
the Mathieu equation. In his readable exposition of the theory of
Hill's equation, the Floquet theory, Stoker (1950, pp 192-213) describes
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it as one of extraordinary elegance. Succinct outlines of the proper-
* ties of the Mathieu equation and some of their implications for engi-

neering systems are given by McLachlan (1950, pp 113-144), and Nayfeh
and Mook (1979, pp 20-26). Additional details, graphs, and many further
references can be found in Abramowitz and Stegun (1964, pp 721-746) and
McLachlan (1947).

In its simplest realization the Mathieu equation describes a
• spring with a partially periodic spring constant:

y'' + (a - 2qcos2t)y(t) = 0 (0-3)*

Its solutions (usually of interest for q small with respect to a )
may be stable or unstable in an infinite number of regions of the plane

* of the parameters a and q. Of special significance is the existence
of subharmonic periodic solutions with frequencies m/nT, m and n
being integers with m < n. Thus in presence of a base-flow frequency
1/ r in (0-3)*, lower frequencies can be generated under appropriate
conditions, Stoker (1950, p 207). In slightly nonlinear springs, gener-
ation of harmonics m/W is commonplace. Here, ultraharmonic solutions

fdp also exist, m > n > 1, as well as a neutral solution with m = n = 1.
Subharmonic frequencies appear in the nonlinear stages of insta-

bilities in many experimental shear layers, which are not purified like
the Poiseuille case. Hence, in such cases, finite-amplitude equilibria,
even unstable ones, are not strictly available for Herbert-type pertur-
bations of periodic base flows. Nevertheless, first instabilities in

* many important shear layers lead to nearly periodic quasi-equilibria,
and the subsequent qualitative behavior of secondary instabilities
suggests that they are often parametric in nature. In particular, most
flow instabilities which bring forth larger scales and slower charac-
teristic times are parametric.

(c) Occurrence of turbulence for Re < Remin2D; concept of Remint

The discussion in the preceding subsection (b) makes us expect three-

dimensionalization and rapid growth of 3D vorticity, initiated by

vanishingly small disturbances at the unstable equilibria along Re B in~cr
Sk 0.02.04a. The computed Remin 2D' corresponding to the leftmost

equilibrium solution at B, is about 2900. Yet spontaneous turbulent

patches are observed experimentally at Reynolds numbers as low as 1000-

1500, presumably where initial disturbances are finite and three-dimen-

sional.

Large 3D disturbances, in contrast to those discussed above, bring

in at the outset the nonlinear vorticity generating mechanism associated

with w-grad(V); see Section 0.03.05. A priori, it seems possible that



33

* no primary or secondary instability might be needed to dehomogenize and

amplify the vorticity as needed in two-dimensional base flows with small

disturbances. Furthermore, the spatio-temporal irregularity in the

causative environmental disturbances would generally be imprinted on

this motion and amplified, so that the first syndrome of turbulence

(Section 0.01.01) would also be present. If so, vigorously disturbed

base flows could evolve continuously, without identifiable bifurcations

or instabilities into turbulent flows. But do they so evolve? Or can

* we infer, in disturbed evolving flows, from theory or experiment, the

presence of very rapid amplifications which could be usefully inter-

preted as local, exponentially or even faster growing instabilities? in

this segment we consider the available evidence from numerical experi-

ments and analysis by Orszag and Patera (1981, 1983) and from low-Re

visualization experiments in water flowing through a channel of high

aspect ratio of 133, carried out by Carlson, Widnall, and Peters (1982).

Carlson & WP, p 498, report: "Below a Reynolds number of about

* 840, a (stimulated) disturbance was found to grow into a semideveloped

spot and then to decay into streamwise structures that ultimately disap-

peared." Fig 0-4b displays a fully developed spot of Carlson & WP,

growing at Re 't 1000 from a disturbance initiated at G by sudden lateral

injection of (incompressible) fluid through a sidewall port. Figure 10

of these authors shows a collection of spontaneously grown spots in

"natural" transition in the duct at Re ,.1200. They comment: "The

shape of the natural turbulent spot was very similar to that of the

artificially generated spot." The suspension of mica platelets in the

water provides approximate visual indications of instantaneous lines of

principal normal stress everywhere (unlike the smoke in Fig 0-5, which

remains nearly mass-attached). The profusion of resulting features

gleaned from many photographs is schematized in a collective portrait in

Fig 0-4a. The leading front of the spot (5) moves roughly with 2/3 of

the centerline ?elocity, the trailing arc near (3), with half that

speed, and (6) represents an extrapolated idealized focus. With the

additional knowledge that the one inch units on the scale in Fig 0-4a
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correspond to 4.23 channel depths, the main aspects of this energetic

nonlinear entity come into perspective. For our specific objectives two

aspects are of particular interest.

Fig 0-4a suggests that at least two identifiable instabilities are

present, one manifested by the oblique waves (7), and the other by the

fine-scale breakdown (8). Carlson & WP write of the latter: "...turbu-

lence sprang forward in tongues of breakdown on these waves." An arc of

dots from the upper numeral 8 to the lower 8 was added to the figure to

mark the approximate beginning of (4), the region of small-scale turbu-

lence. A clear example of the local breakdown is seen in their Fig. 7.

Thus in this analog solution of NS equations with a large three-dimen-

sional disturbance for initial conditions, the evolution is not smooth

throughout but exhibits growth of wave-like formations and extra rapid

local changes. The concept of successive instabilities evidently

remains applicable and useful. An equilibrium state for the channel,

however, cannot be well defined until, for the CWP realizations, the

Reynolds number rises past 1500 (still much below Remin2D and Re cr),

when spreading turbulence effectively crowds out the laminar regions.

The other important lesson is that at Re r 840 turbulence can grow

locally and then decay, with streamwise vortices (of the type also

present in Kleiser's numerical experiment, (Fig 0-3b) as the lingering

features. The streamwise vortices also happen to be the least stable

linear modes. At Re of 1000, turbulent patches grow and, once born,

don't decay. We shall see in Chapter 2 of the Guide that in circular

pipes at Re % 2300 equilibrated turbulent puffs propagate downstream

without net growth or decay: as much vorticity is generated by the

nonlinear production source as is annihilated by viscous diffusion.

Below 2300, these puffs slowly decay; above 2300, they grow. For both

confined flows, we are therefore led to the concept of Remint' belowS
which turbulence may grow temporarily but does not form stable or grou-

ing configurations of self-sustaining turbulence in a given shear layer.

Disturbances in a flow with Re < Remint decay on time scales relevant to

the realization of the shear layer. For practical purposes such a flow

........
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* is globally asymptotically stable and converges to states on the segment

ORemint in Sk 0.02.04a. The conditionally unstable regime in Section

0.02.04 should then extend from Re of 1000-1500 to Re of 5800-6000mint cr

in large-aspect-ratio duct flows.

* In sharp contrast, flat-plate boundary layers (which are also

subcritically unstable!) have Remint approximately equal to Re cr, with

important practical consequences. This basic fact that turbulent spots

in boundary layers grow and propagate into a linearly unstable laminar

* layer counsels caution with respect to analogies with the turbulent

patches in duct flows. In boundary layers there is also no known split-

ting of older patches as there is in channels; there at Re of 1000-1100

the fine-scale turbulence (4) in Fig 0-4a commonly relaminarizes into

horizontal streamwise vortices, dividing the active turbulent region

into two. To call attention to these differences in the Guide we shall

reserve the term "spot" for boundary layers and call the CWP entities

"turbulent patches."

* To test inter alia the nature of NS solutions in the range of

Reynolds numbers below Remin2D where no equilibrium solutions are known

(from which flows could bifurcate on a path to turbulence), Orszag and

Patera (1981, 1983) turned to numerical experimentation. To keep close

* to analytical techniques, they decided on a large initial primary 2D

wave (corresponding to the least stable linear mode at any Re, with rms

amplitude u' of almost 0.2U ) and a very small perturbing oblique wavemax

with a = 1.32 and 6 = 1.32; see Section 0.04.03 for definitions. Direct

temporal numerical simulation showed that at Re = 1500, the 2D wave

almost maintained its energy while the 3D wave grew at a rapid exponen-

tial rate, their 1983 Fig. 5. At Re = 500, both waves decayed.

Because of the arbitrary choice of the disturbances and their

amplitudes, the "critical" Re of 1000 at which the 3D definitely grew

exponentially has little general significance. What does matter is

that, although the primary wave is not an equilibrium solution, the 3D

disturbance undergoes a strong, definitely identifiable instability

which makes the resulting flow three-dimensional and subject to addi-

tional 3D instabilities. (In temporal formulation, the seeds for the

U
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subsequent instabilities have to be included in the initial conditions;

of course, they can also be injected "spontaneously" by round-off

errors.)

The numerical investigation of the energetics of the solutions

discloses that the 2D solution transfers very little net energy to the

3D solution but facilitates a large net transfer from the mean flow.

The rapidity of the 3D growth suggests that the instability should be

inviscid in nature; (see introduction to 0.03 Sections for definitions).

Orszag and Patera show that combined vorticity stretching and tilting

indeed fuels the instability; see Section 0.03.05. At Re > 2900, where

2D equilibrium flows exist, their analytical and numerical results

parallel those of Herbert, including the amplitude and obliqueness

threshold features; see Section 0.03.06b. In fact, the substantial

cross-checks between the work of Orszag and his coworkers, on one hand,

and the independent effort of Kleiser and Herbert, on the other, pro-

vides enhanced credibility. For large-scale computations as for complex

and delicate experiments, some degree of independent duplication is

desirable for assured progress, especially in areas of potential contro-

versy.

0.02.07 Instabilities in nonequilibrium flow?

The experimental and numerical evidence presented in the preceding

section and the experimental evidence in free shear layers (illustrated

in *Note 2 to Section 0.03.04) force us to a working hypothesis that

rapid inviscid instabilities can occur in through-flow systems where no

neighboring equilibrium exists or is identifiable. In presence of large

three-dimensional disturbances and/or in highly unstable flows, new flow

configurations can evidently evolve or bifurcate from non-equilibrium

flows. Since bifurcation in streamwise thickening shear layers repre-

sents a type of imperfection not yet tackled theoretically, there is a

need to fill the void empirically for application to diagnostics, par-

tial control, etc. Operationally, exponentially growing instabilities

can be diagnosed from the graph of the variables against x or t, e.g.

-- I-I
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-O the fundamental and subharmonic instabilities in Fig 0-9, and the vor-

ticity stretching and tilting instability in Fig. 5 of Orszag and Patera

(1983). Should the initial instability be algebraic in nature (see

discussion in Carlson & WP, 1982), operational definitions would be more

*difficult. Perhaps that is why they have not yet been identified in any

experiments. A priori, for Poiseuille flow with large disturbances,

they are as likely suspects as the highly specialized disturbances of

Orszag and Patera.

O If we think in terms of vorticity interactions and restructuring of

vorticity distributions, the hypothesis seems physically reasonable,

even for the plane Poiseuille flow. This flow, being strictly parallel,

presents a more delicate situation. Yet large disturbances coull modify

the flow enough to make it inviscidly unstable, for a long enough time,

to have the sequence of instabilities lead to local turbulence. This is

the lesson of Fig 0-4. The issue then becomes whether the turbulent

configuration is self-sustaining or whether it decays, and brings up the

* theoretically and practically important concept of Re mint Pipe flows

at Re % 2300 challenge the experts on turbulence modeling and computing

with the test case of self-preserviny, neutral turbulent puffs. Ample

detailed experimental data for the test case has been assembled by

• Wygnanski & SF (1973).

At this writing, the above working hypothesis, or equivalent, seems

indispensible to a consistent conceptual framework for interpretation of

all reliable experimental information on through-flow systems.
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0.03 MAJOR MECHANISMS OF INSTABILITIES

In 0.02 Sections each process of transition to turbulence was seen

as a specific evolution of solutions of the governing nonlinear NS

0equations which is determined by the shear layer geometry, on one hand,

and initiated and conditioned by usually poorly known environmental flow

disturbances, on the other. Generally, the evolution corresponds to

dynamic restructuring of the vorticity of the shear layer into suc-

* cessive, more or less stable, increasingly less homogeneous vorticity

distributions with an increasing number of characteristic scales.

Operationally, each rapid restructuring is generally identifiable with

an instability that has an essentially exponential growth in some

observables in the emerging characteristic wave numbers or frequencies--

i.e., an instability of locally linearizable systems. The nature of

these instabilities can, therefore, be studied through the simpler

equations linearized around the base flow undergoing the restructuring;

0 see Section 0.02.02. In contrast, characterization of the intervening

equilibria (when they exist) requires demanding nonlinear techniques, at

times purely numerical. In 0.3 Sections we discuss dominant shear-layer

instability mechanisms as gleaned from linearized theory, numerical

• computations, and experiments.

Shear layers, by definition, correspond to boundary-layer-like

solutions of the NS equations, characterized by narrow convected layers

of diffusing distribution vorticity bounded by walls and/or regions of

essentially irrotational flow. Viscous diffusion smoothes vorticity

distributions, i.e. opposes the dehomogenizing restructuring of the

layer during instabilities, and is generally stabilizing. To understand

the essence of an instability mechanism we can therefore further sim-

plify the linearized arguments by "turning off viscosity" just before

applying our disturbance test of Section 0.02.02, while keeping the same

velocity profile and vorticity distribution. (That distribution, of
course, grew through viscous diffusion and therefore retains dependence

on Reynolds number in any scaling.) We shall discuss five inviscid

Hi
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prototype mechanisms which cause vorticity restructuring in techno-

*logically important shear layers: inflectional instability, centrifugal

instability, subharmonic vortex amalgamation, instability through vor-

ticity stretching and tilting, and cross-flow instability. However, we

shall commence with the one instability which is made possible by

*viscosity itself.

0.03.01 Viscosity-conditioned instability

*When the viscosity is turned off for the Poiseuille parabolic pro-

file (0-02)*, which in Section 0.02.02 was seen to be unstable for

Re > 5772, the instability mechanism vanishes! The vorticity distribu-

tion, +2yU c/h 2, lacks a true maximum within the flow field, -h < y < h,

a necessary condition for Rayleigh's inviscid inflectional instability.

Tollmien has shown that viscosity is essential in two layers: (a) the

critical layer at which the speed of propagation of the instability

waves and the mean flow velocity U(y cr) are equal, and (b) the layer

*near the wall, which has the characteristics of a diffusive oscillatory

Stokes vorticity layer; see Batchelor (1967, p 354). When the inviscid

wall boundary condition v = 0 is augmented by the viscous no-slip

conditions u = 0 and w = 0, the momentum equation in the x-direction

* yields a relationship between the local instantaneous pressure gradient

and the diffusive flux of vorticity (C = av/;x - ;u/ay) out of the wall,

i.e. -vgrad evaluated at the wall:

-V2 ' =F y = 0 (0-4)*

Here v is the dynamic viscosity and 0 the density. In other words, an

oscillatory pressure gradient reaching a wall can be interpreted as gen-

erating oscillatory wall vorticity sources of strength given by (0-4)*.

Following up on a remark of Lighthill (1963, p 93), Section A.06 of

the Guide documents the plausibility of the following self-excitation

hypothesis: the instability amplification is maximal when an effective

tuned resonant loop across ycr exists between the C , v, and p

oscillatory fields. As the oscillatory vorticity, generated according
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* to (0-4)*, diffuses outward from the wall, it decays, but its residue

reinforces the vorticity transfer from the mean flow just above ycr"

Also above y ' its component, , . growing in y , brings about the
cr 3

largest sources of oscillatory pressure in the boundary layer in accor-

* dance with the linearized pressure equation:

v2p = -2dU 3 v (0-5) *

• The resulting pressure reaches the wall instantaneously and closes the

reinforcing feedback loop if the pressure gradient is in phase with the

original vorticity flux, (0-4)*. As one follows the phase changes in

the - v - p chain, Tollmien's classical result that changes phase

* by i across the viscous layer near ycr is a factor in establishing the

conditions for positive feedback.

The net phase variation around the loop depends most sensitively on

the thickness, 6 , of the wall Stokes layer, which scales as (2v/w)S
* where is the circular frequency, i.e. quite differently from ycr" To

maintain optimal feedback, s should then maintain a constant "tuned"s

ratio with respect to y cr as the Reynolds number changes.

Figure 0- 14 displays the dimensionless amplification rate c. in the
, 1

* temporal growth factor, exp(citU-/6 ), for the Blasius layer as computed

by Wazzan & OS (1969). The ratio 6 s/Y , computed from the data of

Fig 0-14, varies monotonically by a mere 4 percent along the ridge of

maximal amplification from Re6* of 600 to 50,000, which covers much

0 more than the practical range of interest for transition. (The range

based on x is 122,000 < Re < 844,000,000, over which the charac-
x

teristic frequency and wave number change by factors of 929 and 4.3,

respectively.) This invariance evidently supports the resonant-loop

hypothesis and the vorticity-based mechanism.

*Note 1 Receptivity to sound in wall layers. There are probably

many ways irrotational pressure waves can be converted to unstable
vorticity waves in a wall layer. The most effective one discovered thus
far was documented experimentally by Nishioka and Morkovin (1983). As

* sound of frequency f impinges on a wall and reflects from it, the no-
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slip condition (0-4)* generates a thin oscillatory Stokes layer at the
wall. If the amplitude A of the sound pressure gradient varies with x
on scales comparable to the wavelengths of the amplified waves within
the area c. > 0 in Fig 0-14 for the given frequency, the self-excited
mechanism just described takes over and makes the unstable wave grow

* from the seeded Stokes layer at the wall. As in the discussion of
Fig 0-2 in Section 0.02.03, this is a forced solution response where the
amplified homogeneous part of the solution dwarfs the rest of the local
response. The growing unstable field propagating downstream satisfies
the homogeneous equations but is in no sense free or arbitrary; when the
sound excitation doubles, the amplitude of the unstable wave also dou-

* bles. The main features of the self-excited waves may be developed in
one or two wavelengths from the start of the gradient variation A(x).

In Fig 0-5 of Kegelman (1982), the axisymmetric body in the inset
was irradiated by sound from a loudspeaker upstream of the open-throat
wind tunnel at levels of 105-115dB. The smoke from an upstream source
impinging symmetrically on the sharp nose made the spatial growth of the

* "forced unstable waves" visible some distance past the shoulder; there
the disturbances became sufficiently large and possibly nonlinear for
visual resolution. Diagnostics with a hot-wire anemometer showed that
the self-excited wave pattern began building up from the Stokes layer
just upstream of the ogive-cylinder junction, as one would expect from
the preceding model. At the juncture (Kegelman 1982, Fig. 38), there is

* a pronounced local peak in static pressure associated with the flow
around the shoulder. To the first order, the diffraction around the
shoulder of sound with wavelengths more than four times the body dia-
meter causes a similar pronounced peak in the amplitude, A(x). Fourier
transforms of peaked shapes yield broad bands of wavenumbers. From the
evident receptivity to excitations at 551 and 785Hz, the wavenumber band

* covers the amplified wavelengths of the boundary layer.

*Note 2 The TS abbreviation for the wall waves. The viscosity-

conditioned wall waves will be referred to as TS waves. Prandtl (1952,
p 117) called them Tollmien oscillations. Theodorsen (1955) proposed
that they be called after Tollmien, who developed sophisticated mathe-

* matical techniques for their calculation, and for Schubauer, who with
Skramstad, documented them experimentally. More frequently the letter S
has been associated with Schlichting, who carried out the detailed
computations with which Schubauer and Skramstad compared their results.
A brief historical account of the early research on these waves and of
Tollmien's role therein is given by Schlichting (1979, pp 465-67). One

* should perhaps add to Schlichting's account reference to Taylor's 1915
reflections on possible destabilization by viscosity.
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0.03.02 Rayleigh's inflectional instability

*This is the dominant first instability in the vast majority of two-

dimensional and axisymmetric free shear layers. They all have maxima in

their initial vorticity distributions, 2 (y), (at the inflection points

of the U(y) profiles) as required by the generalized Rayleigh theorem,

* Section 0.03.01. With the viscosity turned off, the constant-density

fluid cannot exert any torque on the fluid elements; the total vorticity,

' + c, of each element is therefore preserved along its path and its

material derivative vanishes:

D{ £(y) + i(x,y,t)}= 0; -(x,y,0) small (0-6)*
Dt

In the linearized form of (0-6)*, the products of perturbation terms

U - and v-y are dropped and we obtain

DB ( ) = -vQ' = +vU"; with d(U) U, (0-7)*
B dy

The operator D ( ) = (;/ t + U(y) / x) is the material derivative

associated with the base flow. While the full equation (0-6)* tells us

that the net vorticity of any element is conserved, equation (0-7)*

states that the unsteady perturbation vorticity changes along the mean

flow as a result of a source of vorticity per unit area equal to vU".

This term, therefore, represents the transfer rate from the originally

steady vorticity 2 = -U' to the unsteady perturbation vorticity. This

captures the essence of our description of instabilities as dehomo-

genizing: inviscidly the total vorticity is preserved, but the fluid

elements with high vorticity rotate and slide along the increasingly

wavy streamlines to cluster near foci in each wavelength of the most

unstable instability mode; see Fig 0-6 and Fig 0-7.

The linearized equation (0-7)* can characterize only the initial

linear mode of the motion, but its solutions give a remarkably good

account of the true growth rates, the preferred frequency, and the y

distribution of the velocity perturbations (the eigenfunctions).

Figure 0-6, for a simple mixing layer, portrays the extrapolation of the

inviscid linear trends of vorticity restructuring to higher amplitudes
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by Michalke (1965). Numerical computations by R. Metcalfe and J. Riley,

Fig 0-7 (unpublished), show how viscosity smoothes out the lines of

constant vorticity by the end of the first rapid restructuring of the

mixing layer (growing in t rather than x). At any time, vorticity

diffuses perpendicularly to the isolines; this is the basis of Michalke's

suggested smoothing of profiles in Fig 0-6, a model of entrainment in

mixing layers.

Description of this powerful instability as a self-reorganization

of the vorticity field through mutual interaction via the Biot-Savart

law appeals to engineers. Gill (1965) provides an appealing, essen-

tially kinematic account of the mechanism. As the Reynolds number

L U*/v increases, the evolution grows more powerful and rapid, as

comparisons of instabilities in Section 0.04.05 show. For a given

fluid, it is of course only the product in the numerator of the mean

velocity increment across the shear layer times its thickness 6 which

grows. U.6 measures the circulation per unit streamwise length of the

layer--i.e., the total layer vorticity per unit length, the inviscid

agent in the instability. For practical purposes the linear ampli-

• fication rates reach their inviscid asymptote in mixing layers for

Re . 100 when they are nondimensionalized with respect to AU and 6

*Note 1 On nonlinear level and empirical mode selection. In contrast

to acoustic resonances, shear-flow instabilities take place over contin-
uous spectral bands of frequencies and wavenumbers. It is usually
assumed that when environmental disturbances are painstakingly minimized,
the spectral mode f with maximal amplification rate over the band ism
the one that first grows to nonlinear levels. From widely scattered
experimental and theoretical information, nonlinear interaction may
begin when the cross-stream maximum rms streamwise u' fluctuation
reaches 0.004 to 0.010 of the driving mean velocity AU or Uo. For
instance, in some of the experiments of Kegelman (1982) associated with
Fig 0-5, nonlinearly-conditioned secondary three-dimensional insta-
bility appeared visually complete when u' was 0.012 U. and must
have commenced at much lower levels. See Wo the discussion of thresh-
olds in connection with Fig 0-3a in Section 0.02.06b. While nonline-
arity of the fundamental mode f can facilitate such secondary insta-m
bilities (especially of the parametric type), it is believed to inhibit
the growth of its competitors in the amplifiable band of the primary
instability. Similarly, when amplitudes of the 551Hz and 785Hz modes in
Fig 0-5 are given a small head start through the acoustic stimulation

to (discussed in *Note 1 to Section 0.03.01), they reach nonlinear levels
first and definitely preempt any palpable growth of the maximally ampli-
fied f , the presumed winner in "neutral environments."

m

. . .. .. . ...
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Because of the paucity of rigorous data on the diverse "natural

environments" in laboratories and in technological applications, the

general view on mode selection within the available spectrum, described

* above, represents only a working hypothesis which may need revision and

certainly sharpening. For instance, the scenario is apparently not

valid for axisymmetric jets for which the actually observed "natural"
frequency f is commonly just below 0.8f ; see Hussain and Zaman (1978)

and Drubka (1982). The judgment depends on how reliable is the result

f = 0.017 /U obtained on the basis of linear inviscid spatial theory
Sfor a free mixing layer with a constant momentum thickness 9, the

strictly parallel hypothesis of Michalke (1971) and Monkewitz and Huerre

(1981). In axisymmetric and planar free mixing layers, the puzzling
spontaneous selection of the observed f may also possibly be influ-
enced by feedback from the more violent higher-order instabilities with
which we are familiar under the label of jet noise. This feedback is

• discussed in more detail in *Note 1 to Section 0.03.04.

*Note 2 on free-stream disturbances and turbulence onset criteria.

It is appropriate, therefore, to look at three concrete examples of
spectral content of u' within the thin laminar shearing layer on the

outside of the axisymmetric jet with diameter of 5.14 cm in which
Drubka (1982) observed the f-selection anomaly; see Fig 0-8 (with a
logarithmic ordinate). The reader may be shocked by the dominance of
the continuous ("stochastic") spectrum at the start of the inflectional
instability at x/D = 0.1 in Fig 0-8 as well as at x/D = 0.35 and 0.55,
in inset of Fig 0-9, the respective ends of the primary and secondary
instabilities. Real-life instabilities in through-flow systems grow

do from disturbances vastly different from disturbances exactly propor-
tional to the eigenfunctions, allowed in most theories. For instance,
the amplitude A in Sk 0.02.04 characterizes such restricted distur-
bances. The contrast becomes even more impressive when one finds that
Case 1L of Fig 0-8 and Fig 0-9 represents the nondimensionally least
disturbed jet conditions on record. The full rms u' across 80% of the
jet was 0.0006 times the jet velocity U., and reached maximal values
three to five times as high in the thin3outer shear layer (such as
represented by the integral of the spectrum in Fig 0-8). In that fig-
ure, the amplitude of f, visible as a hump near 720Hz, has already risen
by a factor of 5 due to the inflectional instability. The reasons for
the higher hump near f/2 are examined in Section 0.03.04. (Drubka
placed grids upstream of the nozzle to generate different conditions 2L,
3L, and 1T for comparative studies of jet instabilities for three ini-
tially laminar and one initially turbulent boundary layer separating at
the nozzle lip; hence the other more disturbed 2L and 3L spectra in
Fig 0-8.)

Except for people who have carefully watched signals from hot wires
* immersed in laminar boundary layers or free shear layers at higher Rey-

nolds numbers and used diverse visualization techniques, most students
of fluid mechanics would classify the flows at x/D = 0.1, 0.35, and 0.55
in Fig 0-8 and Fig 0-9 as turbulent because the spectra are not domi-
nated by discrete frequencies. Yet, no sudden occurrences of high, non-
molecular small-scale diffusion, the third syndrome of active turbulence,
Section 0.01.01, take place upstream of x/D = 1 for conditions 1L at
Re = 40,000!
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*Note 3 Buffeted laminar layers. Such hybrid regions with substan-

* tial "stochastic" energy contributions (the continuous part of the
spectrum) occur rather commonly and deserve a special classification.
such as "buffeted" or "stirred" laminar layers. In the present case,
the difference has little practical implication (except perhaps in jet-
noise experiments) because the layer soon becomes truly turbulent any-
way. However, boundary layers on blunt-body noses in streams with

* higher turbulence are frequently but incorrectly assumed to be turbu-
lent. In most cases the oncoming turbulence, amplified by vorticity
stretching in the flow around the nose, merely buffets the laminar layer
without making the transport processes in the layer turbulent. Substan-
tial errors in assessment of heat transfer can thus be incurred. Stir-
ring a cup of cream with random motion does not necessarily provide the

* energy and the range of scales to give the induced motion intrinsic
turbulent dynamics. A more theoretical view of buffeted layers is found
in Section A.16 of the Guide.

In the case 1L of Fig 0-8, most of the buffeting came from down-
stream activity, either directly or through conversion of the unsteady
pressure gradients at the lip. We recall that such gradients diffract
around the nozzle lip and generate vorticity fields, which in turn are
amplified, wide-band, by the mixing layer; see *Note 1 of Section
0.03.04. In that sense any separated layer is an amplifier of envi-
ronmental disturbances, a fact to remember when trying to reduce them in
an experimental facility. In cases 2L and 3L of Fig 0-8, an increasing
share of the stirring and buffeting comes from the upstream grids.

*Note 4 Desirable information on free-stream disturbances and some

consequences. In closed wind tunnels, a judicious mix of optimal honey-
combs, screens in the settling chamber, and a moderate contraction ratio
to the test section (see, for instance, Nagib, 1984) can bring the
single (inadequate) measure of the disturbances u'/U down to 0.01 to

* .02 percent, still far in excess of macroscopic manifestations of molec-
ular stochastics. In the lower range of frequencies the most offending
disturbances are again of the buffeting type, propagating upstream from
the common offenders, the diffusor and the first tunnel bend. Inter-
action between residual turbulence and the driving fan, secondary flows
from tunnel bends bringing boundary layer fluid into the free stream,
interactions with and wakes from corner veins designed to counteract the
secondary flows, etc..--all contribute to the free-stream disturbances.

The above characterization of the sole u'/U measure as inadequate
refers to the fact that different important consequences ensue depending
on the mix of its ingredients: true vortical turbulence, true acoustic
waves with short wavelengths, and hybrid irrotational lower-frequency

wI pressure fluctuations within one or two wavelengths from their sources,
such as those in the diffusor. Spectral information from at least two
instruments with varying lateral and streamwise displacements is needed
for adequate decomposition of u' into these constituents over the
frequency range. The usually dominant random low frequency content may
come primarily from large-scale pressure fluctuations but can also be
generated by convected meandering streamwise vorticity. The low-fre-
quency pressure fluctuations modulate randomly all aspects of the flow,
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even the thickness of boundary layers and free shear layers; this magni-
fies considerably the scatter in instability measurements, especially in

wall layers where the self-excitation is sharply tuned. Convected
streamwise vorticity induces streamwise vortices in boundary layers,
which are the least stable modes in the stable regions. If the stream-
wise vorti.es should reach nonlinear levels (say, through stretching in

*the contraction shown in Fig 0-lb to form narrow duct flow), associated
algebraic instabilities, e.g. Hultgren and Gustavsson (1981), could be
responsible for starting the instability chain to turbulence. In the
case of the anomalous Poiseuille Re on the order of 1000-2000, whichtr
do not fit current bifurcation concepts, such a dominant role evidently
has to be assigned to environmental disturbances as the most likely

*rational explanation; see Section 0.02.06.
The reader should be cautious in accepting the u'/U measure cited

in many papers on stability experiments and check to what extent its
spectrum extends toward zero. Until about 1970 the commercially avail-
able instruments cut off at 20Hz or higher. Consequently some of the
classical reports understate by as much as 50% the level of disturbances
(which makes some of the published correlations based on the over-all u'
hot-wire measurements even more dubious).

*Note 5 Conceptual implications of disturbance environments. This

series of Notes should be of interest to all fluid dynamicists without
substantial experience with instability experimentation. Its net mes-
sage: environmental disturbances in through-flow and technological
systems tend to be omnipresent, their origins very complex and poorly
controllable, and their theoretical and practical consequences non-
negligible. As initiators of the chain of instabilities they influence
the specific paths to transition and can advance the onset of turbulence
catastrophically for sensitive designs. Without deeper understanding of
receptivities to the constituent disturbances and better diagnostics for
the environment in each design system, their cumulative, interactive,
and stochastic nature will make progress in rational design of transi-
tion-conditioned systems extremely difficult.

On the purely theoretical side, historically the observed causative
presence of macroscopic stochastic disturbances at the birth of the

*sequence of flow instabilities in through-flow systems made the random-
ness in the final product seem more natural than surprising. Such
observations do not detract from the more recent fundamental findings of
"chaotic motion" in autonomous nonlinear deterministic systems asso-
ciated with the concept of strange attractors. Both trends to irregular
aperiodic behavior undoubtedly stem from the most extreme sensitivity of

46 the solutions of the nonlinear equations to initial conditions. In
through-flow systems the trend is compounded by the role of nonnegli-
gible causative stochastic disturbances.

While the concept of strange attractors brings transition to turbu-
lence rather comfortingly into the broader panorama of nonlinear pheno-
mena, its direct applicability to NS equations is not on the horizon.
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The essential character of spatial three-dimensionality in the distur-
bances and in the higher-order "inviscid" instabilities is unlikely to
be captured by the theoretical tools in the hands of searchers for
strange attractor secrets. Any promising technique would have to be
able first to discern fundamental differences between real-life three-
dimensional turbulence and nonlinear chaotic motions, restricted to two
dimensions.

0.03.03 Centrifugal instability

Although centrifugal instability can be more powerful than inflec-

tional instability in underexpanded supersonic jets, it is of primary

importance for steady wall flows with concave curvature at the boundary,

and of course in our prototype, the Couette-Taylor annulus with the

inner cylinder rotating, Sections 0.02.01 - 0.02.05. To reveal the

essence of the mechanism we shall again resort to our thought experiment

of turning viscosity off after the base flow is established. we use

polar coordinates based on the local radius of curvature R. According

to a variant of Rayleigh's criterion, any inviscid two-dimensional
V 1 r

curved flow for which the local vorticity w = - + - - rz r r r e8
and the local angular velocity about the center of curvature W = V

8 R

have opposite signs, Ww < 0, is locally unstable. Under such condi-
z

tions the radial pressure gradient cannot equilibrate the centrifugal

forces, as we shall indicate heuristically below. When the flow is

viscous this inviscid imbalance still tends to drive secondary flows but

is fully impeded by friction below some geometry-dependent critical

dimensionless Taylor or G6rtler number of the form Re, (5/R) , where Re5

is the Reynolds number based on the driving tangential velocity, and 6

its thickness in concave boundary layers (or the gap between axisym-

metric cylinders).

The nonlinearly saturated secondary flows which result from the

initial linear instability take the form of rows of steady streamwise

counter-rotating pairs of vortices (scaling with 6 ); these fill the

available spanwise (axial) space. The centrifugal instability thus
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* dehomogenizes the vorticity in the spanwise direction and creates a

field of + and - tangentially oriented vorticity, where the original

flow exhibited only a smooth distribution of spanwise vorticity wz

In contrast with previous cases, three-dimensionality of vorticity is

* generated here by the very first instability and is clearly abetted by

different regions of the three-dimensional spectrum of environmental

disturbances, namely steady or slowly meandering streamwise vorticity.

On the other hand, the vortex array in the new equilibrium is steady;

* the second instability should therefore differ in character from the

parametric instabilities in jets and wall layers for which the new

quasi-equilibria are periodic in t and x and two-dimensional; see

*Note 1, Section 0.02.06.

To get a feel for the mechanism of the instability, we consider a

steady circular velocity field (0, V(r), 0) in cylindrical coordinates,

r, e, z. The equation for the radial component of momentum (whether

viscous or inviscid) states that the centrifugal force per unit mass

must be exactly balanced by the pressure gradient P/Dr. As usual, to

test for instability we perturb the flow and check whether there is a

restoring tendency. Von Karman in 1934 envisaged an infinitesimally

thin doughnut of fluid at r0 with speed V0 displaced to a neigh-

* boring rI orbit (rI = r0 + dr > r 0) at some axial position z. To

conserve mass, this outward motion v must be compensated for byr

inward ring motions at other z stations and accommodated further by

axial motions v (r,z) of the displaced rings. The constraint dile toz

the continuity equation a(rv )/3r + a(rv )/az = 0 couples naturallySr z

the cross-stream perturbations v and v and generates the streamwiser z

perturbation vorticity we = av r/,z - av z/ar

Under what conditions is the difference between the ambient pres-

sure gradient at rI , namely PV 12/r I , and the centrifugal force of

the displaced ring P (V + v-)/r larger than zero and the disturbance
0 1

counteracted? In an inviscid fluid the displaced ring must conserve its

circulation, i.e. 27tr 0V0 = 2ir 1 (V0 + va). This evaluates the pertur-

bation v in the tangential velocity in the displaced ring relativeW e

---- .. . - -. . ... . . . -. . .. .. - - ,-
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to the ambient fluid: V 0+v= r0 V 0/rI  Simple algebra then reduces the
28 00_ 2 'd r)2 ddr 0

inequality needed for stability to (rlV) 2- (roV0) %d(rV) 2/dr, dr11 00

Thus another formulation of the Rayleigh stability requirement is that

the square of the circulation of the undisturbed flow increase outward

from the center of curvature; it is numerically equivalent to w W > 0,

which is often easier to apply.

Obviously potential vortex flows are neutrally stable, and any

local rigid-body rotation is stable. The latter fact clarifies why the

cores of vortices trailing behind airplanes relaminarize some distance

downstream. The inviscid criterion applies locally to curved nonaxi-

symmetric flows. The presence of viscosity, even in the simpler linearized

equations for the first instability, brings about serious analytical

(asymptotics) and computational difficulties. Sufficiently reliable

detail results for the Gortler instability in boundary layers along

bodies with concave curvature appeared only in 1981 (see Fig 0-22,

and even then some of their aspects were questioned in 1982. On the

other hand, the formation of Taylor vortices in the constant annular gap

between concentric cylinders when the rotation of the inner cylinder

drives the flow has been a triumph of the instability theory since 1923.

When the outer cylinder drives the flow, a concave boundary layer is

formed at the start and the flow generally succumbs to Gortler and

secondary instabilities before a fully developed laminar flow can be

established across the gap. Since technologically important flows

invariably possess locally curved streamlines, an engineer should be

aware of the consequent possible local stabilizing or destabilizing

tendencies.

As an example, let us apply the criterion to the stagnation flow

in Fig 0-1a. Accordingly, the irrotational flow along streamlines

approaching the airfoil just above the stagnation point has anticlock-

wise rotation but remains neutrally stable until the streamlines enter

the boundary layer. There the vorticity w becomes non-zero and
z

clockwise, and the flow is inviscidly unstable. After exploring at length

the delicate eigenvalue problem for the viscous two-dimensional stn-

nation region, Wilson and Gladwell (1978) concluded that no centrifugal
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instability develops inside the boundary layer; presumably effects of J
viscosity, high acceleration, and wall proximity counteract fully the

mild tendencies to centrifugal instability indicated on the inviscid

basis. Apparently we should ascribe the substantially enhanced stream-

wise vorticity observed growing in stagnation regions, such as in

Fig 0-la, not to centrifugal instability but to vorticity stretching of

Section 0.03.05. (The theoretical and physical issues for this anoma-

lous boundary-value problem, which include direct convection of free-

stream disturbances into the region, are analyzed at some length by

*Morkovin (1979) and are by no means settled.) The presence of G3rtler

instability is often suspected but seldom documented in laminar flows,

mostly because of the difficulty of measuring steady streamwise vorti-

city. On the basis of disconnected and partial evidence, we may con-

jecture that Gortler instability does start the road to transition in

many practical cases of concave walls, from airfoils to windtunnel

contractions. The inviscid destabilizing mechanism remains present,

even accentuated by the velocity gradient, after turbulence is estab-

lished everywhere in the boundary layer. Once again, it should not be

surprising that more or less regular streamwise Grtler vortices have

been identified in turbulent boundary layers; see Tani (1962) and Brad-

shaw (1973, pp 40-42). They change transport properties across the

layer significantly.

(a
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0.03.04 Subharmonic vortex amalgamation

The NS numerically computed vorticity configuations in Fig 0-7.

near the end of the first inflectional instability is of necessity

highly idealized. It corresponds to a strictly discrete spectrum with

no spectral content below the fundamental frequency f. Our glimpses of

real-life spectra in Fig 0-8 and in the top insert of Fig 0-9 make us

aware of the fact that there invariably exists a large reservoir of

energy below the first-mode frequency f. Most of these disturbances are

internalized in the rea:-life vorticity distributions in contrast to

conditions in Fig 0-7. As such, these internal disturbances become the

possible seeds for the next restructuring of the vorticity distribution;

they are equivalent to a pre-stimulation of the secondary instability.

An inviscid stability analysis by Pierrehumbert and Widnall (1982)

of a row of finite-area vortices, and much computing, identified two

types of disturbance-conditioned secondary instabilities. The three-

dimensional type will be examined in Section 0.03.05. For two-dimen-

sional infinitesimal stimulation, the most amplified motion corresponds

to a frequency-halving mode in which successive vortices rotate around

each other and amalgamate, two at a time. In numerous smoke visualiza-

tions the merged pairs give impressions of smooth single vortices,

whereas numerical NS experiments of Metcalfe and Riley (1981) show

incompletely merged vorticity confiqurations such as those in Fig 0-10.

At any distance from the vortices, sufficiently large with respect to

6o the distance between them, induction by Biot-Savart law would be practi-

cally that due to a single circular vortex. While viscosity has yet to

smooth the "valley" between the vortices in Fig 0-10b, the total strength

of these co-rotating vortices remains constant -- that of the sum.

60 Vortex and vortex-loop pairing, discovered in the Fifties, has

slowly become accepted as the most common of secondary instabilities in

mixing layers and circular jets. As with other dominantly inviscid

mechanisms, it remains operative (in a less clear cut manner) when

smaller scale turbulence is present. The original inflectional roll-up

and repeated subsequent pairings, in fact, have been proposed as a

• 4
- . - - .- - - - - - . . - -
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model for the thickening and entrainment in mixing layers, laminar or

* turbulent, e.g. Ho (1982).

If the aforementioned modulation of f in Fig 0-10 contained f/3

contributions sufficiently larger than those in f/2, the one-third

subharmonic would win the competition and three vortices would merge

O into one, as is occasionally observed in noisy mixing layers. In fact,

any number of vortices can merge, as Ho and Nossier (1980) discovered

through visualization when lower-frequency feedback from an impinging

jet to its nozzle lip caused the modulation at the lip. Such subhar-

* monic amalgamations are related through the theory of parametric insta-

bility sketched in *Note 1 of Section 0.02.06. The fact that the base

flow is not primarily a function of the cross variable y and is nearly

periodic in the direction of the flow at moderate Reynolds numbers sets

up a linearized equation for the secondary instability with periodic,

rather than constant or near-constant, coefficients.

*Note 1 Upstream influence and feedback in free shear layers.

Sections A.09 and A.10 of the Guide distinguish between four types of
* upstream influence relevant to interpretation of instability experiments.

The fourth type corresponds to the impingement feedback of Ho and
Nossier (1980), above, and Rockwell and Schachenmann (1982) in Section
0.02.0 . The third type, the upstream feedback from secondary and
higher downstream instabilities, does not exist in parallel-flow tempo-
rally growing instabilities such as those in the numerical experiments

* leading to Fig 0-7 and Fig 0-10. In temporal analysis, the flow is
strictly periodic in x and the motions at all x positions continu-
ously interact since the NS equations, linearized or not, are elliptic
in nature.

In spatially growing mixing layers at low and moderate Reynolds
numbers, the periodicity in x is only approximate during the first
instability and ends abruptly with the pairing. The equations remain
elliptic in x for pressure (finiteness of the speed of sound is
immaterial to the instability at low Mach numbers), but vorticity is
convected parabolically with the flow. An event such as the abrupt
pairing pictured in Fig 0- generates a substantial pressure disturbance
according to (0-5)* in Section 0.03.01 augmented by nonlinear pressure
sources -_Oa2u um7ax ax , summed over m and n from 1 to 3. No suchU mn mn n ..
events are encompassed by the equations for the primary spatially growing
instability downstream of the lip. The consequences of the event are
therefore superposed on the primary field. The event influences the
primary instability dominantly through the upstream boundary conditions
at the lip. As the pressure field diffracts around the lip it generates

%0 vorticity at the lip, according to the no-slip condition (0-4)*, which
is immediately convected into the separating shear layer and amplified

'4



.. -. . . .

53

inflectionally. The receptivity to unsteady pressure fields in attached
* boundary layers requires spatial variation of amplitude A(x) on the

scale of amplifiable Tollmien-Schlichting wavelengths XT" In contrast,
the free shear layer through inflectional instability amplifies a far
broader band of disturbances, with a X cut-off on the order of 6 ,
and does so much more powerfully. (Put another way, the A(x) variation
here corresponds to a Dirac's delta function 6(0+) whose Fourier trans-

* form has a white spectrum, stimulating all wavelengths.)
Drubka's Fig. 61 displays a spectrum of pressure fluctuations

(measured on a flange attached to the nozzle lip) which contains four
peaks subharmonic to f. All four peaks were identified with flow inter-
actions occurring downstream of the first roll-up and thus testify to
the upstream self-modulation of jets, at least at higher Reynolds

* numbers. This upstream effect, first stressed by Dimotakis and Brown
(1976), is a fundamental fact for mixing layers and jets. Some of its
implications were discussed in the Notes in Section 0.03.02.

*Note 2 Disappearance of intermediate equilibria in mixing-layer
instabilities at higher Reynolds numbers. In Drubka's experiment 1L,
the most energetic of the discrete velocity fluctuations, seeded by the
pressure gradient at the lip, turned out to be that at f/2. According
to Fig 0-9 , this subharmonic is more than ten times stronger than the
primary fluctuation f (which, as discussed in *Note 1 of Section
0.03.02, is less than the theoretically most amplified frequency f ).

Evidently in cleaner environments the more orderly pairing can give rise
* to sharper, less smeared pressure gradients with longer upstream influ-

ence. Evidently the upstream self-influence of the f mode, intrinsic
to the self-excited amplification process itself, is weaker. Neverthe-
less, the process is effective indeed: a growth factor in excess of
1000 in less than three wavelengths, X being 0.13D long.

Both f and f/2 modes have essentially exponential growths for
* x < 3D. In accordance with linear theory they grow, at first competi-

tively, at different rates and travel with different phase speeds. Near
x = 3D, their phases lock nonlinearly. Traveling now at the speed of f,
the less amplified subharmonic mode can receive energy from the f
mode. The invigorated subharmonic then grows faster, but again at an
essentially exponential rate. In the idealized theoretical case this

4would be the linearized rate for the growth of a perturbation of an f
quasi-equilibrium consisting of at least two rolled-up vortices.

Clearly, the . f mode is far short of such an equilibrium at
x = 3D. The f mode actually completes its first roll-up while the
secondary instability of amalgamation is going on! We can venture a
general hypothesis: when mean vorticity is more concentrated, as at
higher Reynolds numbers, the vorticity restructuring can commence on a
new scale before the preceding reorganization is complete. Phrased in
terms of vorticity interactions, the hypothesis seems reasonable and not
a radical challenge to the hypothesis of successive equilibria. In
Section 0.02.06 we found it impossible to account for the anomalously
low transition Reynolds numbers in duct flows without allowing insta-
bilities to develop from large disturbances without passing through a

V q "••o- o . • • . . . . . . ~ ..
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flow equilibrium. Similarly, conceptual description of observed develop-
* ments in higher-Re axisymmetric jets does not appear possible without

allowing for simultaneous progression of instability-like restructuring
on several scales from 6 to D without intermediate equilibria.
Drubka's 1982 detailed documentation simply provided convincing concrete
illustrations. There are many other examples of overlapping instability
development involving different geometries of secondary instability.

* One of these, the classical 1962 observations of Klebancff et al of
increasing spanwise corrugation of barely nonlinear, still growing TS
waves in boundary layers is discussed in *Note 1 of the next section.

0.03.05 Instability through vorticity stretching and tilting

In two-dimensional flows the single component of vorticity satis-

fies the same differential equations as the specific heat C T. TotalP
vorticity, like total heat, is conserved when the vorticity flux across

*the boundaries, expressed in terms of the presure gradient, is taken

into account, as previously indicated. In three-dimensional flows,

however, there is an additional intrinsic vorticity source rate per unit

volume, -.grad(V). One of its constituent terms is the vorticity stretch-

ing term L xU/ x, 3U/ x beinq the strain rate in the . direction.X x
Thus when vorticity is stretched, the positive rate of change of the

vorticity is proportional to the vorticity itself, a condition for rapid

growth. When the stretching is abetted by the other two contributors to

• the x component of w.grad V, w y 'U/ y and wzU/Dz, an inviscid,

essentially exponential growth commonly ensues. These sources represent

the rate of transfer to w from tilting of vortex lines into the xx
direction by the flow deformation. The stretching-tilting effect is a

consequence of conservations of mass and inviscid angular momentum

familiar from experiments on gyroscopes. On short time scales in real

flows this inviscid instability overwhelms the viscous diffusion effects

except at the smallest spatial scales. The effect is quintessential to

the dynamics of three-dimensional turbulence.

In the sequence of instabilities the stretching-tilting effect

fuels primarily the secondary and higher-order instabilities. When it

does enter, it is likely to be powerful and therefore must be allowed

( , . • . .
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for in diagnostics. In most shear layers the original vorticity distri-

* bution consists solely of diffused w (y) layers. In the first pertur-z

bation of this equilibrium, the tilting-stretching terms are given by

products of infinitesimals and therefore do not play any role during

most initial instabilities. After the buildup of vorticity concentra-

O tions to nonlinear levels through the first instability, the tilting-

stretching terms become of the first order. They can then participate

in secondary instabilities in response to internalized three-dimensional

disturbances.

* The theoretical and numerical investigations in two-dimensional

ducts of Herbert (1981) and Orszag and Patera (1981) discussed in

Section 0.02.06 are of this type, In Section 0.03.04 we referred to a

second family of the instabilities of the period row of finite-vorticity

* cores analyzed by Pierrehumbert and Widnall (1982). This instability,

dubbed "translative" by the authors, involves stretching and tilting.

It appears most dangerous for disturbances with spanwise wavelengths

about 2/3 of the streamwise separation between vortex cores. Streamwise

m* vorticity, evident in the plan view of the mixing layer in Fig. 176 of

Van Dyke's 1982 Album, is believed to be associated with the translative

instability. Growth of azimuthal corrugations is clearly visible in

Figures 118, 120, and 167 of axisymmetric jets of Van Dyke. These

* photographs show that the growth can be very rapid and can be proceeding

simultaneously with the secondary instability of pairing. Simultaneity

of pairing and three-dimensionalization are confirmed in probing numeri-

cal experiments with NS equations described in a 1983 manuscript by

*Corcos and Lin.

In view of the intrinsic three-dimensionality of the final product

of the instabilities -- turbulence -- the participation of the stretch-

ing-tilting mechanism in secondary and tertiary instabilities could be

• anticipated. It is the increased emphasis on visualization, on one

hand, and the rapid progress in computing, on the other, that is now

making possible more specific statements concerning the instability.

The evident simultaneity of many secondary instabilities at higher
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* Reynolds numbers again seems reasonable when seen as self-interaction of

vorticity distribution evolving at different scales which include the

spanwise direction. This increasing number of possible motions illus-

trates the notion of the trend to larger number of degrees of freedom

with Reynolds number in fluid systems, as mention in Section 0.01.01.

*Note 1 Higher instabilities and breakdown in boundary layers. The

smoke-indicated two-dimensional TS wave configurations in Fig 0-5
change rather suddenly into triangular or truss-like patterns, before
becoming more irregular and turbulent farther downstream. Two types of
such truss formations were observed as early as 1967 but remained not
understood until 1981. In one, corresponding to higher excitation
levels, the trusses formed an "in line" pattern: >>> , thus preserving
the streamwise wavelength X The second type of truss formation was
labeled "staggered": the triangular pattern formed checkerboard fashion,
so that the streamwise distance between successive trusses changed to
two X TS' The 1981 Fig 0-11 by Saric displays three smoke-wire views of
TS waves generated by a vibrating ribbon at three successively higher
excitation amplitudes in a flat-plate boundary layer. The reader can
thus compare the "linear," the staggered, and the in-line wave forma-
tions directly under otherwise identical conditions in the same envi-

*ronment.
It is now clear that the onset of the in-line pattern corresponds

to the rapid three-dimensionalization into streamwise "valleys" and
"peaks" of TS waves when they grow nonlinearly past a threshold of
about 0.0lU -, as classically documented with hot wires 'y Klebanoff et
al (1962). As the growth of the TS component continues during this

* three-dimensionalization, the instantaneous velocity profiles at the
peak spanwise locations become inflected over an increasing fraction of
the TS period. A short distance downstream this is followed by peri-
odic groups of very regular higher-frequency signals appearing over
(riding on) a part of the TS wavelength. Klebanoff et al painstak-
ingly identified the signals as coming from an instability resulting in
a series of fine-scale hairpin-shaped eddies at the peak locations.

WP Formation of local patches of turbulence at the spanwise peak locations
presumably follows the hairpin eddies in two to three wavelengths. All
elements of the preceding "Klebanoff breakdown" were confirmed and
developed further in the case of the breakdown of ribbon-excited TS
waves in Poiseuille flow in a series of experiments by Nishioka and

4coworkers 1975 - 1980.
The above development is fully consistent with the bottom pattern

in Fig 0-11, except that the formation of the hairpin eddies has not
yet been observed in smoke visualizations. The visible smoke accumula-
tions occur in the so-called "cat's eye" region in the boundary layer
which reaches slightly above y-r. The local inflections and high
frequency signals occur higher in the boundary layer, where no smoke is
present. A separate smoke wire placed at a height of about 0.6 should
make the hairpin formation visible.

The feature of the staggered pattern not recognized in 1967 was

.', ' ~~.- .... .. .. ..-, .'..-- .- -'..',- '." .- '... . '- .- '.- ..--. -. " " , . " '
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its subharmonic character and its implication of the parametric nature
of the secondary instability. The swift three-dimensionalizationI. doubles the wavelength and causes rapid rise of fluctuation energy near
f/2 in the hot-wire spectrum. Three sets of experimenters more or less
simultaneously provided complementary descriptions of this new break-
down: Kachanov and Levchenko (1982), Saric and coworkers, and A. Thomas
and coworkers. The nonlinear three-dimensionalizing effect usually sets
in at lower thresholds, on the order of 0.003 - 0.005U. . Smoke visual-

'. ization reveals that the instability can be switched to the "in-line"
form by additional stimulation to about 0.01U. level. There is as yet
no information on possible higher instabilities, equivalent to Kleba-
noff's hairpin eddy formation. Both types of breakdowns have been
observed with and without artificial stimulation on bodies similar to
that in Fig 0-5. There is yet no information on the relative frequency
of occurrence of the two paths to transition outside the laboratory.

Since 1962 numerous theories claimed to "explain" the Klebanoff
breakdown, with various types of ad hoc assumptions. It is probably
safe to say that none can claim sufficient experimental evidence for its
validity, an issue of considerable delicacy. Not until the recent work
of Herbert (1981) was a rational criterion advanced for the spanwise
wavelength in the rapid three-dimensionalization process. Based on our
general discussion of secondary instabilities, a revision of the num-
bering in the literature seems desirable. Specifically, the hairpin-
eddy instability called secondary by Klebanoff should probably be
called tertiary. The earlier rapid three-dimensionalization processes
almost surely represent genuine secondary instabilities with nonlinear
thresholds in both types of breakdown. They both appear to be para-
metric, because of the periodicity of the TS waves, and involve vorti-
city stretching and tilting in the development of the three-dimensional
vorticity formations. More definitive statements concerning matching of
theory and observation must await further work.

Kachanov and Levchenko (1982) repeatedly observed artifically
unstimulated subharmonics at 0.3f and 0.7f, which call for theoretical
explanations. They believe that when a parametric instability of a
periodic system with frequency f develops to nonlinear levels and
approaches saturation, it may allow co-existent solutions with af and
bf , where a and b are proper fractions with a sum equal to unity.
They document experimentally that small artificial excitations at either
frequency af or bf indeed cause growth of spectral humps at both
frequencies. A general theoretical demonstration of such an effect in
parametric systems is desirable. Inter alia, it would strengthen diag-
nostics in nonlinear phenomena in other fields as well.

For the sake of completeness of our present picture of transition
initiated by TS instability, the experiments of Arnal and Juillen
(1978) deserve a reference. In presence of a non-separating adverse
pressure gradient, the three dimensionalizations of Fiu 0-11 appear
absent. A genuine nonlinear, essentially two-dimensional, roll-up
evidently takes place near the inflection point of the velocity profile.

-.' .-.-..V.< . ... .. . -. .. . . -.- . . .. . ,.... . .- ,- .-. . . -. ,.2. . .. ? . : - < .;,. .; , ,
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We thus have a third topography of boundary layer breakdown, although
"4 details of higher instabilities remain unexplored.

0.03.06 Cross-flow instability

Cross-flow instability refers to the initial instability of a

boundary layer for which the streamline direction at its outer edge and

the shear stress at the wall are not contained in the same plane through

the local normal to the body; see Fig 0-12. In this figure local orth-

* ogonal coordinates are chosen with y in the direction of the normal to

the body, x tangent to the body and parallel to the outer streamline,

and z tangent to the body and perpendicular to the xy plane. At a

given x,z position the boundary layer velocity vector twists from the

Qshear stress direction at the wall to the potential streamline direction

at y = 6, tracing out the surface marked in gray in Fig 0-12. The

negative gradient of the tangential component U(y) in the xy plane

gives the o z(y) vorticity distribution (which alone characterized the

* shear layers studied thus far). The gradient of the local cross-flow

velocity component W(y) in the yz plane yields the new feature of the

unperturbed layer: a streamwise w X(y) vorticity distribution (positive

and negative).

* Such boundary layers are encountered on sweptback wings, yawed by

cylinders, and other three-dimensional surfaces. Poll's 1980 photograph

of the oil flow visualization of the front part of a circular cylinder

yawed at 550, Fig 0-13, tells us that the dominant instability of this

more general vorticity distribution brings about a roll-up into curved

one-sided quasi-stationary nonlinear vortices on the scale of 6 . The

pattern has been observed widely and with other means, including tra-

versing hot-wire anemometers. The anemometers also show some unsteady

signals, possibly directionally amplified waves in secondary insta-

bilities of the new base flow. The serious gap in our knowledge con-

cerning secondary instabilities and onset of transition to turbulence in

cross-flow geometries is covered in practice by rather crude empirical

correlations.

i
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When a disk like a circular buzz saw rotates in free air, a three-

dimensional boundary layer builds up at the disk and is cast off at its

edge; see Fig. 5.12 of Schlichting, 1979 ed. Again, similar curved

quasi-stationary vortices form and rotate with the disk. Since in the

disk case the boundary layer is flat and of constant thickness, both

theory and experiment are simpler, though very demanding. Much of our

still meager understanding has been built up on the disk prototype.

Early theory established that the instability is inviscid; the

effect exists when viscosity in the instability equations is set to

zero. Heuristic arguments centered on the analogy with two-dimensional

inflectional instability. In Fig 0-12 there is an inflection point I of

the W velocity projection, which corresponds to a local maximum of the

vorticity component w x In a projection plane through the y axis

rotated somewhat beyond 900 from the xy plane, the inflection point

falls near where the projected velocity profile becomes negative. We

now know that for such an orientation, periodic vortical disturbances

locally perpendicular to the plane can have near maximal amplification

along their axis and yet remain stationary with respect to the wall; see

Tani (1981). On sweptback cylinders and wings the orientation of the

growing vortices is close to the local freestream direction, Fig 0-13.

We note that once again the first instability results in a periodic

dehomogenization of the vorticity distribution. This distribution,

however, is stationary with respect to the wall and thus differs signi-

ficantly from the inflectional instabilities already discussed. Because

of their convected periodic patterns, they led to parametric secondary

instabilities. No perturbation study of steady streamwise vorticity

distribution in boundary layers in either the cross-flow or the 56rtler

instabilities has yet been reported; the breakdown pattern is probably

different. Furthermore, in two-dimensional inflectional instability,o
the total vorticity is conserved in the dehomogenization process. Here,

the initialpresence of the finite additional vorticity component w inx
Fig 0-12 and the finite strain rate 3U/ x around the cylinder makes

some of the vorticity stretching terms of first order, even in the

initial instability. Thus the vortex stretching mechanism, also invis-

*1 -" . . -' . -" . .'.' . - '. - .-" " . .' .. '' L .. " ". . - . " . - ." 2 ' " . '''' .,. . ''' " ' " ' . ' .
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cid, may possibly contribute a net source of vorticity in the cross-flow

instability.

Subsequent secondary and tertiary instabilities in cross flows

remain uncharted. They tend to cause transition in boundary layers of

yawed cylinders at Reynolds for which the boundary layers on unyawed

cylinders remain laminar. Similarly, on airplane wings swept back in

excess of about 200 this road to transition is believed to be shorter

than that initiated by the competing TS mechanism. It seems reasonable

that three-dimensional boundary layers (with more than one component of

vorticity) should reach the intrinsically three-dimensional state of

turbulence more rapidly. However, hard documentation for these obser-

vations is missing. Indeed, much basic research remains to be done on

cross-flow and subsequent instabilities.

0.03.07 On some missing links

The six preceding 0.03 Sections cover the most important identified

instability mechanisms in mechanically driven nonstratified shear

layers. All but the fourth and fifth do commonly initiate the different

types of sequences of instabilities discussed in the 0.02 Sections.

However, these mechanisms can also apply in secondary and higher-order

instabilities. Thus the Klebanoff breakdown in boundary layers com-

mences with the viscosity-conditioned TS mechanism of Section 0.03.01,

proceeds with the parametric form of the vorticity stretching and tilt-

ing instability of Section 0.03.05, and is followed by a somewhat three-

dimensional version of inflectional instability of Section 0.03.02.

In many real-life paths to transition the whole sequence or some of

the mechanisms in the sequence remain unidentified. One important case

concerns the path to turbulence in wall layers with distributed rough-

ness, of obvious interest in applications. Recent theories proposing

that the effects of distributed roughness make mean velocity profiles

inflectional and thus more susceptible to TS waves have been disproved

'a
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experimentally by Reshotko and Leventhal (1981). The perspective on the

roughness problem thus remains as outlined by Morkovin in 1978, pp 17-

20 -- namely, poor.

It is instructive to consider the example of the transition process

downstream of an isolated three-dimensional roughness of height k on0
the order of 0.26 or less. It is known that when its Reynolds number

Rek (i.e., kuk/v with uk  representing the velocity at height k in

the layer with the roughness absent) approaches 600, the periodic vortex

loops growing inflectionally on its near wake are becoming sufficiently

strong to court further instabilities. Moderate acoustic stimulation of

the proper frequency can make the turbulence onset jump from very far

downstream to within 305 - 606 of the protuberance, a curious incubation

distance. The mechanism of this rather spectacular turbulence-trigger-

ing instability is not known. Hence, in this sequence, our understand-

ing remains limited to the first of the instabilities. Even though the

equations describing the base flow in the vicinity of the obstacle and

its perturbations would have to be solved on a very advanced computer to

provide enough spatial resolution, we can safely classify it as inflec-

tional and understood. All features of the amplification process,

including its sensitivity to sound, follow the charted behavior of its

prototype, the separating mixing layer.

If it now could be proved that transition in presence of sandpaper

is similarly controlled by Rek at the small number of the highest pro-

tuberances in the probability distribution of the grains, we would

achieve a quantum jump in our understanding. Problems with spatial

resolution, the masking effects of free-stream disturbances, and the

length of the incubation process have all conspired against conclusive

tests of the above hypothesis.

When the missing link in our understanding of observed transition

is that of the primary instability, the transition category is called a

bypass. In other words, bypasses are those roads to transition which

cannot be identified as starting from a known linear instability. The

very term "bypass" is a reaffirmation of the fact that judiciously

utilized linear theories -- generalized Tollmien-Schlichting waves,

".. ..... .. .. .. ... .. . ..... .- . .--."-_. . ..-..-... .-.-.. . .. •.. . . . . .. . . . . -.. -"
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G6rtler theory, etc. -- provide us with the basic framework within which

some organization of our multifarious observations can be rationally

effected (e.g., Reshotko's 1969 analysis of contradictions among super-

sonic facilities). Thus transition due to distributed roughness repre-

sents a bypass today. Another bypass, as little understood in detail

now as in 1943 when Charters first described it, is the phenomenon of

transverse or lateral contamination. We still cannot rationally predict

the spreading angle of the turbulent front (wedge), nor why it drops to

roughly a half at supersonic speeds.

Insufficient attention to the possibility of bypasses in new designs

involving uncharted ranges of governing parameters cost tens of millions

of dollars in the ill-fated 1956-58 designs of heat-sink noses of re-

entry vehicles; see Murphy and Rubesin (1966). Referring to that inci-

dent, C. duP. Donaldson wrote in 1970, "...the nature of transition on

blunt bodies at very high Reynolds numbers has been a source of embarrass-

ment to aeronautical engineers". Since we still do not understand the

mechanisms in the smooth-wall transition, even when compressibility

effects are absent, the case remains an embarrassment. An up-to-date

critical review of the sole available tool, that of correlation of

transition Reynolds numbers in different environments, is found on pp 17

and 18 of Batt and Legner (1983).

S"
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0.04 TOOLS AVAILABLE FOR DIAGNOSTICS AND ESTIMATES

0.04.01 Varied applicability of linearized theories

How can the broad-brush information in the preceding sections be

utilized in the field or laboratory? What available detailed informa-

tion can be especially useful? Let us first concretize the judgment

problem by considering the following historical experimental paradox.

A simple mixing layer which is unstable at practically all Reynolds

numbers is significantly stabilized by one-sided constraint of a wall.

However, constraining the resulting boundary layer by adjoining a

second parallel wall to form a duct flow has the opposite effect and

brings the commonly observed Reynolds number of transition Re downtr

by large factors.

Clearly only a broad conceptual framework can encompass such

0 diverse facts. In fluid mechanics we are blessed with the framework of

the Navier-Stokes equations as a basis. The NS system offers a most

reliable set of constitutive equations, but they are nonlinear. It is

the multiplicity of solutions of these nonlinear equations (see Section

0 0.02.05) which is at the heart of the problem of instability. Computer

solutions of specific nonlinear problems are currently limited to con-

ceptually critical, simple prototype geometries. We are therefore

effectively restricted to linearized stability codes buttressed by

theoretico-empirical qualitative understanding. The qualitative under-

standing itself is based on the mathematical structure of each problem

and on associated detailed experimental information, the subject matter

of the Guide. One of the purposes of the 0.04 Sections is to illustrate

the character of the available linearized information and its judicial

application.

Returning to the comparison between the free layer, the boundary

layer, and the Poiseuille duct flow, we observe first that the trend in
4the quantitative measure of linear stability, Re cr is correct in the

cr'. . . .
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first step but contradictory in the second. For Blasius boundary layer

Recr based on 6 is approximately 1500 (Re,* - 510), while in the

Poiseuille flow Re based on the comparable thickness, half of the
cr

duct height, is 5772. Both the wall-layer instabilities are of the

weaker, viscosity-conditioned type, and both are classified as having

the fickle subcritical or inverted bifurcation. However, since even the

Poiseuille Re of 2900 (see Sk 0.02.04b) exceeds the observed Remin2D tr

of 1000-2000 in noisier facilities, we are led to environmental distur-

bances and early nonlinearity as the most likely suspects. The combined

consequences of Nishioka et al (1975), Orszag & Patera (1981), and Carl-

son & WP (1982), discussed in Sections 0.02.06b and c, have now solidi-

fied the suspicions into a most probable explanation for the paradox.0
Another part of the explanation probably stems from the fact that

the slow streamwise shifting of the intrinsic scale, (x) , in boundary

layers is assumed away through the quasi-parallel hypothesis. With this

assumption, the linear mathematics and the charts versus Re for the

Blasius and Poiseuille cases may look alike, but we must reintroduce the

variability of 6 in our physical interpretation. In Fig 0-14, as we

follow the streamwise developments in the boundary layer, the abscissa

changes and with it the amplification rates. Thus the disturbance

growing at the most amplified rate becomes "detuned" along the layer and

would eventually be damped if nonlinearity and secondary instability did

not interfere. See top of Fig 0-11. There is no detuning in the Poi-

seuille case; see related discussion in Section 0.02.06a.

The main conclusion of the comparison, however, is the recognition

that we cannot rely on theory, linear or nonlinear, for help in specific

assessments of confined open-system flows, typified in Fig 0-1c. For

duct and pipe flows, we must resort to organized accounts of experimental
S

information, with qualitative appreciation of the behavior of turbulent

spots, puffs, and slugs, and of the enhanced upstream pressure influence

in confined flows. The 0.04 Sections therefore concentrate on the

linear properties of free shear layers and boundary layers and on the

broader qualitative aids in their interpretation.

S
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0.04.02 on relations between temporal T and spatial S

characteristics of instability theory

In linear problems, complex notation permits simultaneous efficient

0 accounting of the amplitude and phase in oscillatory solutions of equa-

tions. The relation between any physical property of the periodic

solution, v(x,y,t), such as velocity components, vorticity, pressure,

etc., and its complex T or S formulation is given in the first line of

O Table I, borrowed from Obremski et al (1969). In the temporal formula-

tion, initial data would be prescribed along the x axis, v (x,y,0), and

the x variation represented spectrally in terms of the real wave number

= a = 2 /X. For a representative Fourier wavenumber the parametersr

of the problem would then be Or' , Wi, and Re * , as defined in

Table I. In the S formulation, the solution would proceed in time

from the initial distribution v(x,y,0), with spatial initial data

v(0,y,t) being supplied continuously for the fluid convected into the

O open domain; see Section A.09 of the Guide. It is efficient to furnish

the information v(0, y, t) in a Fourier representation in terms of the

real circular frequency w = w = 2rf. For a representative Fourier

frequency the corresponding parameters would again be four in number:

O 0¥' U r' CtiI and Re6*.

The reader can verify that c = Wr /r is Z-he speed at which ther rr

physical periodic pattern moves in the streamwise direction. The ampli-

fication rates are defined as the coefficients in the exponent, i.e. the

(slopes in semilogarithmic plots of any physical variable against t or

x. When in the quasiparallel approximation the amplification eigen-

values w. or a . vary slowly with t or x, the total amplification1 1

of the wave involves t or x integration along the path, as indicated

4in Table I. When the T formulation is applied to boundary layers grow-

ing in x , the x integrand is given by the Gaster transformation

(rather than by wi/cr = r ci/Cr as used by Schubauer and Skramstad in

the report on their classic 1943 experiment). We recall that the group

velocity, defined in Table I, is the speed of propagation of wave energy.

K
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The complex cross-flow distribution v1 (y) on the first line of

Table I represents the computer eigen or characteristic solution, i.e.

the first nonzero solution of the homogeneous set of linear perturba-

tion equations about the base flow U{y; 6*(x) }. It is a solution only

when special eigenvalue relations hold between the four parameters of

the T or S problem. An arbitrary choice of two parameters (commonly ar

Re * or wr , Re6*) determines the other two. To obtain a feeling for

the physical problem the reader is strongly advised to study the graph-

ically presented behavior of the S eigenfunctions u1 (y), v1 (y), pl(y),

and l(y) (and some of their physically relevant products) for five

Reynolds numbers in a flat-plate boundary layer and their interpretation

by Hama, Williams, and Fasel (1980). (One word of caution: the printed

Fig. 14 is in error.) An interesting sample of inviscid eigenfunctions

for the velocity components of a family of mixing layers is easily

accessible as Fig. 8 of Monkewitz and Huerre (1982).

Most computer codes do not provide the eigenfunctions routinely;

they stop with a tabular or graphical representation of the eigen rela-

tions -- the essential performance parameters of the instability. T

maps of the eigenvalue relations for the Blasius layer, U = const for

the accelerated stagnation flow, U = aIx , and the retarded boundary
- .0476

layers in special adverse pressure gradients U = aIx , with an

inflection point at y/6 = 0.24, are displayed in Fig 0-14, Fig 0-15,

and Fig 0-16. The velocity profiles of the base flows for these cases

are all members of the Falkner-Skan similarity solutions of boundary

layer equations, with parameter = 0, 1, -0.1, respectively; see

Schlichting (1979, p 164). No comparably detailed plots are available

for the S formulation.

We can use these T maps in spatially amplifying boundary layers

because the amplification rates are small. Gaster (1962) proved that

the T and S systems are equivalent to second order in the maximum T

amplification rate, w. ; the correspondence is shown at the bottom ofimax

Table I. We note that the Gaster relation is less useful for free

layers because the amplification rates are rather large.

21c
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* OCurrently, even mathematical journals accept papers on stability

problems in the S formulation. When Gaster first submitted a manuscript

with the S formalism, it was sidetra.ked for several years as not cor-

rectly posed mathematically. At this writing, emotional preferences

O with respect to the two formulations have not fully subsided. The

problems, especially beyond the linear stage, appear sufficiently diffi-

cult to make us value contributions to insight from either formulation,

keeping in mind the limitations of each approach.

* OIn through-flow systems, illustrated in Figs 0-la,b,c, the dis-

tances grow spatially. Except for fully developed confined flows, the

base flows also thicken in x. By assuming quasi-parallel flow, the S

approach suppresses the dependence on x of the base flow U{y; 6*(x) 1,

a constraint for which we must mentally correct in our interpretations.

At this level of approximation the S and T results are equivalent

within the approximation of Gaster's transformation. In particular,

they agree that all variables propagate at the same phase speed and

* oamplify equally at all heights of the layer because the eigenfunctions

vI(y) also have their slow x-dependence suppressed. First-order cor-

rections for noriparallelism have now been computed in several ways, e.g.

Gaster (1974) and Saric and Nayfeh (1977). In non-parallel base flow

the characteristic functions v1 become x-dependent and the physical

variables no longer grow together proportionately. With minor excep-

tions, the changes have more theoretical than practical significance for

boundary layers. Hence the working hypothesis of equivalence of the T

and S formulations at the level of Gaster's transformation is both

tenable and practical.

At the level of secondary instabilities, where the mathematical and

computational difficulties are severe, much of the insight cited in 0.02

and 0.03 Sections has been achieved through the T formulation with the

x-independence replaced by periodicity in x. That insight is not

contradicted by experimental results when in our interpretation we allow

for the growth of the layer in x (if present) and for the possible

presence of significant upstream influence; see *Note 1 of Section

0.03.04.

'
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0.04.03 On the role of oblique waves and Squire's theorem

The wave fronts of the T and S waves in Table I are obtained by

setting the exponent constant, i.e. a x - w t = const, in both cases.r r

Oblique waves generated by oblique vibrating ribbons have verified the

expected fact that they too represent bona fide solutions of the line-

arized equations. For in oblique wave with its normal inclined at an

angle tan-1/r to the x axis, the exponent in the first line of Table

I becomes i(cr x + Bz - Wrt). For incompressible flows, the T lin-

earized equations for the oblique waves turn out to be identical to

those of a two-dimensional wave with wave number a 2D and Reynolds

number Re 2D' which are related to the parameters of the oblique wave by

the Squire transformation

a2 + a2 = 62 'Re= (0-8)*

2D ' 2D 2D

Thus we can use two-dimensional maps such as in Fig 0-14 to infer the

eigennumbers for the oblique case.

Consider the critical two-dimensional case for which Re 2D is

minimum and the amplification rate, ci , is zero. From the first

relation in (0-8)* we infer that a for ci = 0 is less than a 2D and

from the second that Re must be more than Re2D. Therefore Squire's

theorem follows, namely: the oblique waves become critical at higher

Reynolds number higher than the two-dimensional TS waves. For spatially

nonneutral waves, a. differs from zero and Re2D becomes complex.

That destroys the usefulness of (0-8)* for comparison of physical flows

but not its computational advantages. It was, for instance, found

effective by Gaster (1975) in the wave-packet paper discussed below.

For compressible flows the equations are still more complicated, and atw
low supersonic Mach numbers the most amplified waves are actually in-

clined at approximately 55° . Like sweepback, obliqueness maintains

upstream influence, here needed for self-excitation of the wave.)

Even at incompressible speeds where (0-8)* is valid, there are

regions of parameters where oblique waves are more amplified than the
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*two-dimensional ones. This is most easily seen from computations with

various constant 6 values. The amplified areas within the B = 0.1,

0.2, and 0.3 neutral curves in Fig 0-18 (courtesy of T. Herbert) extend

below the lower critical loop of the two-dimensional waves, 8 = 0.

* Thus at a given Reynolds number oblique disturbances with long wave-

lengths can be more amplified than the two-dimensional wave with the

same x . The three Re conditions, each marked with a dot incr

Fig 0-18, follow the Squire theorem; at the points of vertical tangency,

* the local obliqueness angles are 20 , 38.30, and 600, as B rises from

0.1 to 0.2 and 0.3. Thus, unless oblique waves are stimulated by some

three-dimensionalizing agent, the two-dimensional waves have a head

start in amplification and tend to dominate, especially at lower Rey-

* nolds numbers.

Because of linearity we are free to superpose oblique waves; we can

Fourier-synthesize them over both a and a to fit whatever geometry

of stimulation there may be. An impulsive puff from a wall hole under a

* boundary layer initially stimulates waves in all directions, creating a

spreading and TS amplifying kidney-shaped wave packet in the laminar

layer. Its properties were investigated in a classic experiment by

Gaster and Grant (1975). Gaster (1975) also computed the evolution of

* this laminar spot from the S linearized equation by assuming that the

spectra were initially flat in a and a , as well as in w , as befits

a Dirac delta function event. With allowance for a slight phase shift

within the distribution, the agreement between the measured and pre-

dicted fluctuations was most gratifying before nonlinear growth inter-

fered.

A two-dimensional TS wave traveling in the x direction in a

Blasius layer has no component of velocity u in the direction s ofs

its wave front. An oblique wave, however, does. In the momentum equa-

tion for that direction, the vertical component of the fluctuation, v,

multiplied by dU/dy cos(x,s) creates a forcing source term for u s

even though the fluctuating pressure gradient, ap/as , is zero. The

gradient au s/y yields vorticity normal to the front while the rest of
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the fluctuating motion generates vorticity parallel to the crest, as in

the two-dimensional wave. Two waves of equal strength but of opposite

obliquity produce a spanwise corrugated pattern in the form of line 1 of

Table I multiplied by 2cos/bz. According to Herbert (1981, 1982), this

* composite wave, which has streamwise vorticity, is the perturbation,

which in the secondary instability grows exponentially when it interacts

with a two-dimensional TS wave grown beyond a nonlinear threshold.

Among these spanwise corrugated waves, the one with maximum amplifica-

tion presumably determines the spontaneously selected spanwise scale 8

observed in Poiseuille secondary instability (Section 0.02.06b) and in

Fig 0-11 for boundary layers.

An alternate explanation for the staggered pattern in Fig 0-i is

possible in terms of resonant triads of waves proposed by Craik (1971).

According to a weakly nonlinear interaction involving quadratic terms

alone, the superposed pair of waves above can grow rapidly in conjunc-

tion with a two-dimensional wave with a2D = 2aobI , all traveling at

* the same speed c r . At this writing, experiments capable of discrimi-

nating between the alternate explanations have not yet been performed.

A reader interested in graphical information concerning oblique wave

eigenvalues beyond Fig 0-18 will benefit from examining cr and c.r 1

* plots versus 8 at a fixed Re, such as in Fig. 2 of Craik (1971); the

second plot is known as a kidney plot. Gaster (1977) in a paper des-

cribing his techniques for obtaining the oblique spectra in the puff-

wave-packet problem, includes detailed kidney maps for Re6* of

1000, 2000, and 3000.

S
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* 0.04.04 Comparing TS instability of boundary layers

Knowing how to read maps may seem mundane, but it is valuable not

only for applications but also for forming a concrete picture of the

* terrain--the specific trends in the major instability characteristics.

Before focusing on these trends, let us illustrate the elementary pro-

cess of extracting detail information from the maps at hand. The first

facts to ascertain for any map are the time and length scales used in

* nondimensionalization. The T maps of Fig 0-14 to Fig 0-17 are all based

on 6 (x), the local displacement thickness, U (x), the local potentiale

velocity at the edge of the boundary layer, and the derived time scale,

6 /Ue .

• Any physical condition of a boundary layer is specified by the

dimensional triad of 6 , U , and v, and hence by Re6  Suppose wee
wished to find from the T map in Fig 0-14 for the Blasius layer the

locally most amplified dimensional frequency and its spatial dimensional

* amplification rate of Re6 = 1000. One major characteristic of the

layer, the crest along ridge of maximum anplification, is the locus

connecting smoothly the points of tangency between the curves c.=const
1

and the vertical lines of constant Re6 . The point Re6 1000,

* = 0.25 and c. = 0.01 is one such point of tangency and maximum•1

amplification. To get its circular frequency w = a c , we interpolate

between the neighboring curves of c =const and obtain \ 0.25.0.351;
r

the dimensional frequency is then 0.0878U e/6 radians per unit time.

To get the spatial amplification rate we utilize Gaster's transfor-

mation and the definition of the group velocity:

-a. = cC./C ; c = c + a(PCr/ a) (0-9)*
1 rgi r r r rRe

The partial derivative in (0-9)* is found from the intercepts of the

!Z!
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* neighboring cr curves on the vertical line:Ac r=0.02, Aa r=0.29-0.22,

yielding approximately 0.42 for c . The dimensional amplification
* g 

rate -ai/6 then comes out ' 0.006/6 per unit length. The corres-

ponding temporal amplification is r ciU e/6 nu 0.0025U e/6 per unit

time.

This little exercise brings out the fact that the dimensionless

spatial rate has a clear physical meaning: in a downstream distance

corresponding to one displacement thickness, the traveling disturbance

* at the given frequency grows by a factor exp(-i) IV 1 - a.. (The tem-1 1

poral rate has no such comparable simple meaning; see Table I.) Since

the displacement thickness is an intrinsic local property of a layer,

comparison of amplifications of two different layers on a "per 6

obasis" should be generally meaningful.

The information provided by the shape and height of the ridge of

maximal amplification offers a more global measure for comparison. A

sea of stability surrounds the amplified range along the zero level

* curve a . = o or c. = 0, variously called neutral, or critical, or of

marginal stability. (By definition in Table I, the T and S formulations

give the same neutral loop.) The easiest way to comprehend the differ-

ences between boundary layers with and without pressure gradients is to

• contrast the neutral curves of the Falkner-Skan family as was done in

Fig 0-17. The accelerating boundary layers in plane stagnation regions,

= , are clearly most resistant to TS instability, having Re 6 incr

excess of 10,000 and a very narrow spectral band of excitability. Since
0

they approximate conditions on a circular cylinder past 30 , a full page

is given to the detailed amplification map in Fig 0-15. Back in

Fig 0-17 we recognize a progressive destabilization of the accelerated

layers, as S along with the favorable press- e gradients decrease toward

zero, the flat-plate case.

This classical boundary layer also deserves a full page map,

Fig 0-14, to allow more accurate interpolations. In this diagram,

(d
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moving leftward from far ° ght--i.e., from nearly inviscid conditions at

very high Reynolds numbers--corresponds to a thought experiment in which

viscosity steadily increases. The upper branch II of the neutral curve

and the lower branch I meet asymptotically at Re of infinity. The

Blasius boundary layer is thus unstable at infinity only to an infini-

tesimally narrow wave band--i.e., it is inviscidly neutrally stable.

Moving left with increasing viscosity, we observe the amplification to

increase toward the ridge of maximum amplification with a narrow crest

of c. = 1.96 near Re6 of 7000. This corresponds to the destabiliza-
1

tion due to viscosity which puzzled the early researchers. We recall

from Section 0.03.01 that, along this ridge of optimal tuning of TS

waves, the ratio of the Stokes-layer thickness 6 to the critical5

height ycr remains essentially invariant. As we move leftward past

the ridge, the layer stabilizes; the intuitively normal trend of stabi-

lization with increasing viscosity now obtains.

The full-page map Fig 0-16 for a typical adverse pressure gradient

illustrates the effect of an inflection point in the boundary layer

profile. The broad opening of the neutral curve at far right signifies

that the layer is inviscidly unstable for waves of wavelengths from

= 26 /0.523 to - at high Reynolds numbers. The presence of the wall

inhibits but does not prevent the inflectional instability. Moving to

the left with increasing viscosity, the layer destabilizes beyond the

inflectional rates! The ridge of the viscously tuned TS mechanism still

yields the highest amplification rates, despite the inflection in the

velocity profile. Hot-wire measurements reveal two maxima in u' corres-

ponding to a double maximum in the computed eigenfunctions. Here the

TS and the inflectional mechanisms compete, with TS winning the race.

To the left of the ridge, viscosity again stabilizes the flow. We can

continue to follow the effects of increasing adverse pressure gradients

in Fig 0-17. The spectral band of inviscidly unstable waves broadens

continuously up to 6 = -0.1988, the boundary layer on the verge of

separation (with U(v)/ay = 0 at y=0). The surprising destabilization

k
.



74

due to viscosity still takes place for the highly retarded boundary

layer with 3 = -0.14, but disappears for the separating layer.

In view of this disappearance we might ask whether the inviscidly

unstable separating layer is as unstable as the fully separated mixirg

layer in Fig 0-19. The ultimate answer is no; the boundary conditions

v=0 and v/ y = 0 at the wall still partially inhibit the full dynamics

and kinematics portrayed in Fig 0-6. Comparing quantitatively the

instability of shear layers from different families of profiles requires

care for a number of reasons, some of which will surface in our dis-

cussion of mixing layers in the next section.

*Note 1 Limitations on usage of linear solutions. An important

concrete example of limitations on linear concepts is illustrated in
Fig 0-11 due to Saric (1981). A traveling disturbance amplifies inside
the neutral loop until it reaches branch II appropriate to its frequency
and Re6 ; it decays thereafter, unless it has grown to nonlinear levels.
For the frequency of these experiments with plane wave stimulation,
branch II was reached at the 170 cm station from the leading edge of the
plate in all three cases. From the reas.red y-maximum fluctuations u'
in percent of U = 6.6 m/s at branch II, as indicated under each photo- m
graph, and from the smoke evidence, we zonclide that when u' was
raised to the 0.003U level, the dlsturbances passed out of the linear
regime. The nonlinear developments in the two lower photographs were
already discussed in *Note 1 of Section 0.03.05. For the upper picture
hot-wire measurements confirmed that the fluctuations indeed attenu-
ated and behaved linearly. The smoke distribution that, together with
the vorticity in the neighborhood of y had been gradually dehomoge-
nized and concentrated in the so-calle "cat's eye" regions up to branch
II, starts spreading away from the concentrations. Besides molecular
diffusion, modification of streaklines near y-r as the cat's eye regions
contract with decaying fluctuations is probab y responsible. The experi-
ments underscore the importance of simultaneous global visualization
techniques and quantitative point measurements (with due concern for
interference and contamination). In connection with the issue of visual
evidence, it is desirable to comment on the change in sharpness of the
visual smoke-line definition downstreaic, of station 205 in the lowest
picture. Most experienced smoke interpreters would judge that fuzzi-
ness, associated with small-scale turbulent motion, starts appearing
above the centerline near statikn 210 and that at 220 most of the smoke
near the centerline is engulfed hy new turbulence. This is an example
of the type of diffusive change mentioned ir Section 0.01.01 in connec-
tion with definable onset of turbulence.

LOI
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0.04.05 Mixing layers

Wakes, jets, and mixing layers are all inviscidly unstable so that

important viscous effects are not commonly encountered in technology.

We have already discussed some of the viscous low-Re issues in connec-

tion with the cylinder wake in Sections 0.02.02 and 0.02.03. The Re-

development of wakes and jets is complicated by the fact that their

natural scale, the width or diameter, D, gets augmented at higher Rey-

nolds number by a second, natural scale, the decreasing thickness of

the boundary layer, which separates from the parent body of the wake, or

from the parent-nozzle of the jet; see Fig 0-1c. Since these separating

layers are de facto mixing layers, it is desirable to understand well

the behavior of such layers first.

As in the wake case in Section 0.02.02, there are problems in

defining Re theoretically and experimentally. A convincing demonstra-cr

tion that Re is not zero for practical purposes is still missing. Thecr

easily accessible Fig. 13.2 of Betchov and Criminale (1967) presents a

linear viscous T map for the profile U = atanh(y/L) together with the

limiting inviscid eigenvalues corresponding to infinite Re . While the

low-ReL features may be debatable, the important message is that viscous

effects beyond ReL of about a hundred do not play a significant role in

linear theory.

Because of the high amplification rates, the Gaster transformation

ceases to be a useful bridge between the T and S formulations of stabil-

ity as in Table I. The two formulations now differ, for instance in

their predictions for the tanhy profile as demonstrated by Michalke

(1964, 1965). In the important mid-range of frequencies Freymuth's 1966

experimental results agreed more with the T predictions than with the S

analysis shown by the solid line in Fig 0-19. Historically, this dis-

crepancy delayed the general acceptance of the spatial theory for almost

a decade, even though the S eigenfunctions and phase speeds fit Frey-

muth's experiments significantly better. As we see from Fig 0-19, the

1981 spatial theory of Monkewitz and Huerre resolved most of the con-

fusion.

". ' -' . " '- .'- " -'' -- -- ,' .-. -.. -" -. . . . - ,
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The irony of the situation is that when one uses the tanhy profile

one violates the definition of inviscid theory as enunciated in the

introduction to the 0.03 Sections. Mentally, we should turn off the

viscosity only for the fast processes of the instability, not for the

slow development of the base flow. The Blasius profile referred to in

the legend of Fig 0-19 represents a viscous similarity solution to the

same equation that gave us the Blasius boundary layer. The difference

lies in the boundary conditions: the no-slip wall conditions are re-

* placed by the requirement of zero disturbances at negative infinity

after the wall terminates at the lip. It appears that when the quasi-

parallel spatial theory deals with a realistic initial distribution of

vorticity, it agrees with instability experiments rather well, consid-

ering that mixing layers are generally much less parallel than boundary

layers.

The boundary layer thickness used in the defining parameters of

Fig 0-19 is the momentum thickness, e . The map for the Falkner-Skan

separating boundary layer in the preceding section uses 6 in its

nondimensionalization. For a given set of profiles the ratio 6 / E

defines the well-known form parameter, H, for which the Falkner-Skan

family varies from 2.216 for the stagnation flows to 4.029 for the

separating profile (Table III of Obremski & ML, 1969). Because of this

gradual shift the quantitative comparison between the profiles in

Fig 0-17 would differ if e had been used as the scale length. And

obviously, the quantitative comparison between a profile of one family
*

expressed in terms of 5 and another with e as variable, could lead

to erroneous conclusions. That is a general problem in comparing insta-

bilities, illustrated in the preceding section when we proposed to

compare the map of the separating boundary layer with the inviscid map

of the mixing ) -yer in Fig 0-19.

A more basic question arises in this respect: does one thickness

characterization have an edge over another as being more intrinsic to

the instability process? For example, is e or 6 preferable for
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* correlating transition characteristics on a sphere in presence of dis-

tributed roughness? (An historical, unanswered question.) To correlate

Re across the full Falkner-Skan set of families requires both char-cr *

acterizations, or more exactly 6 and the shape factor; see Section

* 3.4 of Obremski & OM (1969). There is yet another mostly untested

candidate, the vorticity thickness defined by the ratio of the mean

velocity change across a layer to its maximum slope (or vorticity),

6 AU/U'max , which for the tanhy profile is equal to 4.

* The paper of Monkewitz and Huerre (1981) bears indirectly on these

issues. The authors provide and compare the inviscid maps for two

families of the technologically important mixing layers between streams

with finite mean velocities U2 and UI . One family, nondimensionalized

with respect to 6. and (U I + U2)/2, is U = 1 + Xtanh(y/2), with

X= 2( 2 - UI/(U2 + UI ) varying from zero to unity. The other family

of the base flows again represents solutions of the Blasius equations

for the diffusion layers between the U2 and U1 streams. The corres-

* ponding length scale is the classical Blasius thickness, based on

U2, B = ('Vx/U 2) , and the velocity scale is the upper, higher speed,

U2  Readers are invited to give themselves an instability-comparing

tour through their S maps as we did in the preceding section, and to

* ponder on what aspects of the profiles may cause the observed differ-

ences.

*Note 1 What accuracy in U profiles for reliable predictions? One

would think that the 20% discrepancy in the maximum amplification rate
seen in Fig 0-19 would have called the suitability of the tanhy profile
into question earlier, at least if there had not been the T versus S
distraction. There are, however, associated issues of biases and
smearing in measurements of profiles in thin layers with nominally zero
velocity at one edge and of the criteria for best fit with theory.
Different individual decisions in these issues modify the adopted mea-
sure of thickness and the effective U"(y) distribution and, through
them, the amplification rate. Monkewitz and Huerre in their Fig. ld
show the relative fit between a recent experiment and the two profiles
used in the theory. Insistence on best fit for the maximum vorticity
definitely favors the Blasius layer.

Discussion of the role of profile curvature U"(y) in Section 3.1 of
Obremski & ML(1969) demonstrated that it constitutes the single most
important determinant of the TS layer instability. We can see the main

'a
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reason from Eq(0-7)*; U"(y) sets the strength of the rate of vorticity
transfer from the steady mean flow to the unsteady fluctuations. (When
U" is zero, as in plane Couette flow, the flow is altogether stable to
linearizable perturbations!) Generally, therefore, a seemingly satis-
factory match between a profile used for the base flow and the real

* profile in the laboratory or in a future flight of a new design may hide
nonnegligible differences in the second derivative.

*Note 2 On design risks. Consider the implications of the sensiti-

vity of instability calculations for an engineer who contemplates a
design in which a boundary layer is pushed beyond its Re . His problem

* is not unlike that of a drunk who ventures onto a busy seet trusting
that he will not fall down before he gets to the other side. If the
boundary layer remains laminar, who cares about what happens on the
other side, namely in the wake? The drunk's risk rises with blustery
weather and slippery streets--i.e., with environmental disturbances. So
does the designer's risk. The simile points up the issue of judgment of
risk in potentially unstable situations--or persons. If onset of turbu-
lence meant a mere 20% degradation of performance 3% of the time, engi-
neers and their financial backers might be willing to cross the street.
But how does one measure the risk if there is no stochastic information
on transition (for the specific design) which could be converted into
quantitative probability statements?

*• Since capability for such probability assessments is not on the
horizon, engineers must temper their innate optimism and try to under-
stand the capricious nature of the boundary layer. In view of the
sensitivity to U", discussed above, it would be wise to insist on having
their judgment supported by the best computer codes. That is not a
minor matter. They first need a reliable code for prediction of the

.* potential flow for their three-dimensional shape. The next step requires
accurate computations of three-dimensional boundary layers (with a weary
eye on the danger of laminar separation). This capability remains an
art, still in development stages. Having obtained their U"(y) and W"(y)
distributions (see Fig 0-12, which follows Fig 0-2), they will need a
reliable specialist in three-dimensional linearized stability computa-
tions. Such computations are not yet as "standard" as for two-dimen-
sional or axisymmetric flows. Nor do they have precomputed maps for
profiles like that in Fig 0-12 on which to train their engineering
intuition.

Only then can they be ready to face the decision of how far beyond
Re and Re .int(if there is information on Re .intfor that geometry)cr- mint. . n
they dare to push the boundary layer in their design. In their delib-
erations they must not forget the danger of the missing links of Section
0.03.07. Distributed roughness and unexpected isolated roughnesses have
historically prevented the laminar-flow airfoils of World War II to
achieve more than some 30% of the laminarity designed for. The third
law of aerodynamics (and airline ground crews) states that surfaces in
flight service become fouled. In the low-level part of flights a pilot,
like the vacation driver, has to worry about insect impactions and must
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be concerned with even small protuberances near the leading edges of the
wings and on the nose of the fuselage rather than with the windshield;

see Coleman's 1961 research on insect impaction. In matters of design,

transition is easier to control than to postpone, or to predict.

0.04.06 Basic compressibility effects on stability

Ironically, Michalke's student Gropengiesser completed a disserta-

tion in 1968 dealing with spatial inviscid stability of compressible

0 mixing layers, based on the generalized Blasius solutions rather than on

the hapless tanhy profiles. Inset to Fig 0-20 summarizes the geometry

and the boundary conditions, which include the possibility of static

temperature differences between the upper and lower regions; note that

subscript 2 now refers to the lower stream. With this interchange of

subscripts, Gropengiesser's scales are identical to the M & H scales of

6B and U2 above. Many of his stability maps extend to Mach number 5

and, of course, include M = 0. No comparisons between Gropengiesser's

0 incompressible results and the experiments of Freymuth (1966) seemed to

have been made at the time, comparisons which could have clarified the

T vs. S confusion early. The dissertation, which is in German, has not

attracted enough attention even though it is available from DFVLR. It

* is not referenced by Monkewitz and Huerre.

Compressibility introduces variable density P and the coupling of

viscous dissipation into the dynamics of the system. For instance,

Fig 0-20b illustrates the effect of having the lower fluid at a static

temperature T2 below that of the static temperature T of the upper

stream. From the inset of Fig 0-20 we see that because of the dissipa-

tive heating (at constant pressure) the maximum static temperature in

the mixing layer exceeds both T2 and T 1  The layers become hotter

and thicker as Mach number increases. This affects directly the base-

flow vorticity and other relevant distributions as reported in Figs 4-7

of the dissertation.

N U : _7 - . * -
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These mechanically driven temperature and density effects on

stability of compressible flows are interpreted at length in Sections

A.08 and A.II-A.15 of the Guide. The interpretations are based mostly

on the comprehensive pioneering studies of Mack (1969) and the earlier

work of Lees. Two general trends are worth mentioning here. The first

stems from the fact that the source vU" of unsteady vorticity in

Equation (0-7)* is essentially replaced by

v.{PB U'}'/P B , p B(y) = base flow density. (0-i0)*

Thus most of the earlier statements concerning the incompressible

distribution U"(y) and the consequences of its vanishing in the

boundary layer can be rephrased in terms of the coefficient of v in

(0-i0)*. In particular, an effective generalized inflection point is

now found where this coefficient goes to zero. For Gropengiesser's

mixing layers the y distributions of the coefficient of v in (0-i0)*

for different Mach numbers and T 2/T1 ratios are exhibited in Fig. 7 of

the dissertation. Since the layers are inflectionally unstable in the

first place, the additional effects are gradual. Boundary layer flows

at walls impermeable to heat, which have no inflections in their velo-

city profiles, become slightly inflectionally unstable as soon as Mach

number is larger than zero. The inviscid component of the instability

of compressible boundary layers increases with Mach number roughly in

proportion to the distance from the wall of the generalized inflection

point. The trend toward inflectional instability parallels in all

repects but one the trend in incompressible boundary layers with

increasing adverse pressure gradients described in Section 0.04.04.

This exceptional development contradicts the usual expectations

associated with an increase in the inflectional component of insta-

bilities. Instead of rising, the overall instability subsides with

increasing Mach number. Both the extensive computations of Mack (1969)

for the flat-plate boundary layers and Gropengiesser (1969) for the

1j
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mixing layers document this fact. It is conjectured on varied circum-

stantial evidence(e.g. Fig 0-24) that decrease in upstream influence

(which is exerted at the speed of sound) may be responsible for the

observed increase in stability of both free and wall layers with M.

Upstream influence plays an essential role in the linear self-excitation

of low-speed instabilities; see Lighthill (1963, pp 91-93). Blocking of

linearizibly weak upstream-traveling pressure fields is difficult to

demonstrate. However, if we can show blockage of stronger, nonlinear

fields involved in an instability, the principle must be valid for

weaker fields as well. Figures 0-24a,b,c, due to Dyment and Gryson

(1978) document pictorially the inhibition of upstream influence as Mach

number increases in the case of a 2D wake generated by a flat plate

perpendicular to the flow. Large disturbances from the unstable motions

are prevented from reaching the origin of the two shear layers through

the outer stream when an enclave of supersonic flow is formed along the

widening wake. Disregarding the black shadow of the external support

system, the reader can trace first the Re-controlled shortenin9 of the

distance to the first roll-up as the Mach number increases from 0.3 to
45

0.6 while the Reynolds number UH/v grows from 8.2 x 10 to 1.35 x 10

The thin shear layers leaving the sharp edges of the plate become turbu-

lent quite early. Turbulence on a scale small with respect to the

distance between the two "vortex sheets" does not hinder their strong

antisyrnetric instability.

In Fig 0-24, the arrow helps the reader locate the nearly sonic

streamwise flow just outside the first bulge of the upper sheet; the

nearly sonic flow steepens the compression phase of the acoustic waves

propagating upstream from the region of sudden vortex formations and

oscillations. In shadowgraphs such weak shocklets manifest themselves

as a fan of black-white curved wavefronts.
40 5

When M rises further to 0.76 and Re to 1.55 x 10 , the insta-

bility and the sources of the shocklets move dramatically downstream;

see Fig 0-24. Either the configuration of the two vortex sheets has

become substantially more stable, despite further rise in Re, or it is

less disturbed by the antisymmetric upstream traveling pressure waves,

- - . . . - . , .. ..-.. - - - . - .. -. -. ." '. .- . . - . -. i - . .- ., . ' . ,
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1or both. The most likely explanation is the second. Such delays of

instabilities are rather common for non-slender wakes.

While the transonic inhibition of the upstream influence by way of

the free stream appears clear in Fig 0-24, upstream signals can still

0propagate thr.ugh the body of the wake. However, the shift of the

location of the first roll-up farther downstream suggests that the

partially blocked signals are less effective in stimulating the insta-

bility. In the case of wall-layer instabilities, upstream influence

* through the subsonic portion of the boundary layer is always possible,

however ineffective it may become.

It is believed that the effect demonstrated for the nonlinear

disturbances in Fig 0-24 is the main cause of the dramatic loss of

effectiveness in self-excitation as M1 increases, which is seen in the

maps of linearized amplification rates -a. in Fig 0-20. As mentioned

in Section 0.04.03, oblique waves maintain upstream influence to higher

Mach numbers and should therefore become more dangerous than their two-

* dimensional counterparts. This expectation is born out by Gropengies-

ser's plots of -a. against the spanwise wavenumber $ (his Fig. 32-

35). At M of 2, the maximum amplification occurs for wavefronts swept

back about 600 for both of the conditions in Fig 0-20.

* The fact that for M1 > 1 pressure disturbances can travel at

smaller speedls than the mean flow in parts of the shear layer and free

stream has two additional consequences observable in Fig 0-20. New

modes of instability (called after their discoverer, L. Mack) can arise

in which vorticity disturbances traveling along streamlines and pressure

disturbances propagating along local Mach lines are so tuned as to

extract energy from the stream. In Fig 0-20 the crests of the inflec-

tional, initially dominant first mode decline to zero by M1 = 3, but

* new, weaker second-mode crests emerge just before M1 reaches 2. In

boundary layers the pressure fluctuations can be trapped against the

wall and grow larger than in Fig 0-2. It is believed that at hypersonic

speeds Mack's second and third modes probably cause most of the bound-

*ary layer transitions not produced by roughness.

0
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The last additional effect is confined to the lower left regions of

Fig 0-20 and is of little practical consequence. Within the heavy lines

labeled u- cr = a the infinitesimal instability waves travel super-

sonically with respect to the free stream and therefore radiate acoustic

energy outward. Historically it had been postulated that the drain of

energy from such supersonic disturbances would make positive amplifica-

tion impossible.

Clearly, there is a wealth of information in these and the thirty-

odd additional maps of Gropengiesser (1969). If his theory should work

as well as that of Monkewitz and Huerre, judged by Fig 0-19,his disser-

tation would indeed represent a treasure chest of useful tools.

0.04.07 Gdrtler instability in concave boundary layers

While the inviscid mechanism of centrifugal instability, outlined

in Section 0.03.03, is relatively simple, its correct mathematical

description for slowly growing boundary layers along concave walls

presents delicate questions and may still not be fully settled; see

P. Hall (1982). In contrast, all the TS maps discussed in the 0.04

Sections thus far have been agreed upon since the eigenvalue problem has

been computerized. The G maps in Fig 0-22 of Floryan and Saric (1982)

and Fig 0-25 of Ragab and Nayfeh (1981) represent the culmination of a

critical development over nearly a decade and should be preferred to the

many others in the literature.

The disturbance pattern in G6rtler's instability (see Section

0.03.03) involves all three components of motion as indicated in

Fig 0-21. As hinted in that sketch, the earlier theories were temporal,

but the physical growth is steady and spatial, in the x direction. This

very steadiness makes the phenomenon less accessible to measurements and

therefore much less explored, with less accuracy especially in the

embryonic stages. DC hot-wire measurements in spanwise traverses are

far less accurate than the time-dependent measurements in TS experimen-

tation at comparable stages of development. One also loses the con-

venient and powerful spectral decomposition. The alternative techniqu,

.. . . . .Lx "- - .7:
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*• visualization, calls for even greater finesse in order to achieve good

resolution. The data of Tani and Sakagami (1962) referred to in

Fig 0-22 were obtained with hot wires and the data of Bippes (1972) by

visualization. The reader is referred to the English translation of

* Bippes' dissertation to develop appreciation for the nature of the

problem and the required accuracy.

These and other experiments indicate that the C36rtler vortices

observed in a laboratory are strongly dependent on conditions in the

* test facility. In other words, those streamwise disturbances in the

flow, which penetrate the boundary layer, initiate the motion. The

instability then filters and amplifies these disturbances from within a

rather broad band of wave numbers, comprising the maximum amplification

0 line in Fig 0-22. In contrast to the conditions in the mixing layer and

other experiments, no spectral information whatsoever exists comparable

to that for time-periodic instabilities in Fig 0-8 and Fig 0-9 to help

us better understand the mode selection process. There may well be

* simultaneous linear amplifications going on as in Fig 0-9, but they have

remained below our resolving power thus far.

Clever techniques for stimulating discrete wavelengths were devised

by Bippes and by Wortmann (1964) to gain so'iie control over the unknown

• initial conditions. They also tested for neutral stability--i.e.,

whether such a forced disturbance decayed or grew; the issues are com-

parable to those discussed in connection with Re in Section 0.02.03.cr

The quantitative judgment is limited, however, as already discussed. An

4average neutral locus from these experiments is indicated by the line

with heavy dots on the right of Fig 0-22, labeled 8 = 0. We noteexp

that this is to the right of the theoretical neutral curve = 0.

Either theory or experiment, or both, may be responsible for this dis-

crepancy.

How can these maps be used? The physical conditions are defined

again by U ,v , a boundary layer thickness 6r , and in addition by

the radius of curvature of the surface, denoted by R in Fig 0-22.

Since we use Re for Reynolds number rather than R, we can drop the

double underlining without any confusion. Although the surface is
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* curved, the pressure gradient is postulated to vanish. To first-order

accuracy the boundary layer profile is that of Blasius. The thickness

5r here is (jx/U) , the same as that used by Monkewitz and Huerre

(1981) and Gropengiesser (1969) in the mixing layer. The thickness 6

* in the TS flat-plate map in Fig 0-14 is 1.728 . Some GWrtler insta-r

bility maps use the momentum thickness 8 = 0.6646 as the scalingr

length. In logarithmic coordinates the conversions are simple.

To enter the map we need to know the nondimensionalizing scales,

* here 6r and Uc, and the special definitions of G, a , and a . The

Gdrtler number G is the Reynolds number Re6  multiplied by the small

dimensionless parameter which characterizes curvature effects, (6 /R)

The reader must be alert to the switch in the wave number definitions

* from all our previous usage: a is now the spanwise dimensionless wave

number 27r6 rI , and B is the streamwise dimensionless growth rate

defined operationally below.

For historical reasons the expression for total spatial amplifica-

* tion is more complicated than that in Table I:

ln(A2/AI) = S6'6dx'/x' (dim) = S24dG/3G (nondim) (0-ii)*

*O In Fig 0-22 let us follow a streamwise vortex of fixed dimensional

wavelength X . As the boundary layer thickens the abscissa of the

vortex path, a , grows proportionately to 6 , while its ordinate G
3/2

varies as 6 r/. Since the map is logarithmic, the path has an upwardr

slope of 3/2. Generally this takes us to higher and higher amplifica-

tion rates B . Floryan (1980) in his Fig. 13 converted this tradi-

tional map to one with identical coordinates but with lines of constant

t = G. This greatly facilitates step by step computations of total

amplification (0-1l)* along the path.

The experimental points for a given flow tend to follow paths with

slopes of 3/2. To help identify the dimensional X along any of the

paths, the wavelength parameter A was devised; it is merely the

-..-
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* G6rtler number G, referred to X rather than . Once the Gortlerr

vortices are large enough to be identified on the map, they are usually

beyond the neutral curve and grow at constant X . As already mentioned,

conditions in the facilities generally "choose" the wavelength without

* much regard for the existence of a locally most amplified wave number.

Nevertheless, the map does indicate the dangerous territory and repre-

sents our sole quantitative tool for G6rtler instabilities.

The placement of an experimental point on the map is governed

* purely by G and a . When the point falls on a constant 8 curve it

does not mean that the theoretical rate was actually observed. Because

of the resolution problems, few observed vortices remain in the linear

range long enough to define unambiguous exponential growths. On the

!O other hand, there is no rapid shift to turbulence once slow saturation

begins unless free-stream disturbances are high. All the points entered

in Fig 0-22 are laminar, of course.

There is yet little agreement on the nature of secondary insta-

* bilities, which may well be disturbancc .-* nditioned and differ between

facilities. Work is going on in a number of research organizations, and

we may expect clarifications and new information soon.

From a practical viewpoint, a more serious limitation of the infor-

*• mation is its avoidance of non-zero pressure gradients. Ragab and

Nayfeh (1981) discuss the subject and provide some quantitative infor-

mation, such as the neutral curves for the Falkner-Skan 6 profiles, in

Fig 0-25. Even if some extra approximations were necessary for their

computations, the trends in the figure should be trustworthy. Clearly

more effort is called for, both theoretical and experimental.

*Note 1) On instabilities between rotating concentric cylinders.

This note is by way of introducing two broad comments on nonlinear
developments in our prototype flow in Sketch 0.02.04b (the Couette flow
with inner cylinder rotating) in a chapter devoted primarily to linear
tools. It is also a way of urging the reader, especially one with
appreciation for "structure" in physics and mathematics, to benefit from
the critical expository survey of the field by DiPrima and Swinney
(1981). Not much can be added to their presentation and informative
figures. In particular, their Fig. 6.6 concretizes our Sketch 0.02.04b;

'I
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*their Fig. 6.1 updates Coles' 1965 classification of the stability

regimes (including rotation of the outer cylinder); their Fig. 6.5 illu-
minates the cell selection mechanism; their Figures 6.7 and 6.8 sum-
marize the full range of developments in spectral terms; and their Fig.
6.9 illustrates the imperfection of the first bifurcation through a
series of solutions of NS equations for an annulus of finite length.
And, of course, their Fig. 6.1 (converted here into Fig 0-23 and re-
ferred to in the 0.02 Sections) beautifully captures the pictorial
panorama of a sample sequence of the instabilities, which has inspired
and challenged students of the subject since G. I. Taylor published the
equivalent of (a) in 1923.

The first comment concerns the contrast vetween the spatial nature
* of the growth in the CWrtler instability and the accepted designation of

the instabilities in Fig 0-23 as temporal. In the latter case, any
change in local vorticity is not convected away by the stream as in the
concave boundary layer. In the closed confined space, the disturbance
feeds back repeatedly onto itself and viscous diffusion ultimately must
even out any differences between initial developments along the span.

* When long settling times are allowed, iaitial disturbances due to a
small incremental step in the rotation rate are uniform around the
periphery and a "weighted spanwise averaged" amplitude A(t) can be
assigned to the mode motion almost immediately (Section 0.02.05).
Recent work of Park and Donnelly suggests that traveling, disorderly
"dislocations" between vortex cells may be lingering beneath the w eigh-
ted average long past the diffusion time appropriate to the length of
the annulus. Most instabilities are hyper-sensitive to even smallest
disturbances in the proximity of a bifurcation point. Associated aper-
iodic behavior can be present near the very first bifurcation.

When settling times are short and the start-up rotation vigorous,
or even programmed in time, the situation ma be likened to the initial
development in a high-Re jet in Fig 0-1c. There, too, the shear layer
is born suddenly with pre-existent, possibly irregular or programmed,
vorticity distributions. As we have seen, in the jet the specific p.th
through the instability stages, and their competition (or connivance),
is the subject of much research. In the rotating annulus, these devel-
opments are generally of little interest, and the focus of study is on

40 the final equilibrium configuration, brought about by confinement,
dissipation, and continued effects of spanwise diffusion. The fasci-
nating multitude of final NS equilibria is described in Section 0.02.05
with the evidence of Benjamin and Mullin (1982). Similar freezing at an
intermediate development stage cannot occur in the jet case, because
diffusion as well as instabilities continuously change its scale in the
x direction. For this system: Re # const, but Re = f(x).

The annulus phenomena generally represent the strictly parallel,
pure or purified flows. However, when the outer cylinder is given the
initial impulsive start, the system acquires an Re(t) nature. In fact,
it corresponds to the temporal CGrtler instability grafted upon a
temporally growing base-flow boundary layer. Temporal equivalent of
Fig 0-22 are then in order. As noted earlier, for the Re(x) and Re(t)



iD-A134 796 UNDERSTANDING TRANSITION TO TURBULENCE IN SHEAR LAYERS 2/2

(U) ILLINOIS INST OF TECH CHICAGO DEPT OF MECHANICS
MECHANICAL AN. MI V MORKOVIN MAY 83 RFOSR-TR-83-693i

UNLSIID F92-7COi / 04 N

E7hhhMhE
-mh-EE07h

ED.',



,i 3..+

-~1.0 jj. '-

11111 11616

* -- 336 -

II6 *o 2.0~o

-.3'+ III 1.°  'L"" -+

11.25 111111I.4 10 .+ lum Itt+ l+
,+l 55 + II +

MICROCOPY RESOLU)TION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I.

4-I

,,-

, "I



I.7

~88

systems, bifurcations from non-equilibrium flows may represent a neces-
sary extension of the theoretical concepts originally developed for pure
and purified flows.

A second comment stems from Batchelor's 1960 observation on a paper
of Donnelly and Simon. His point was that at higher Reynolds numbers

*the steady Taylor vortices really consist of a core of solid body rota-
tion and thinner boundary layers at the walls and between the cells.
The observation surely remains valid at still higher Re after single or
double waviness sets in; see Fig 0-23b,c. Internal boundary layers are
a way of life at high Reynolds numbers; Tollmien's critical layer is
another example. It would seem that the viewpoint could provide a

* bridge between the more globally oriented studies of annulus phenomena
and the aerodynamicist's outlook typified by this report.

The boundary layers between the cells really form extended narrow
jets subjected to an adverse pressure gradient as they "impinge" on the
other side of the annulus. The outward moving jet is the stronger one,
with a higher Reynolds number. Aerodynamically, the movement toward and
nearer the outer wall is then the most unstable local flow and the
likely site for genesis of turbulence. This region is the experimen-
tally crucial one. At the earliest transition, measurements elsewhere
merely probe the "buffeted", still laminar layers discussed in *Note 3
to Section 0.03.02. Strong support for this view is provided by the
visualizations of Tillmann (1961) and unpublished visual observation in

* the USSR.
In a similar vein, the surprisingly regular small scale features in

the outer stagnation regions in Fig 0-23d suggest that a local instabil-
ity probably is taxing place there, even though the flow is turbulent.
Turbulent flow in an annulus does not escape centrifugal instability.
The instability and the confinement combine to generate purified fixed-

* scale coherent turbulent structures. As in the case of turbulent puffs
in circular pipes at Re = 2300, the structures are in equilibrium, ready
to be analyzed by specialists in turbulence simulation.

.61= - :[,. i , :;i . i- --," • - -, " " " -- •-" "- -- . " -" . ". - , -. - - - - - ',: , -- " , - -&A P-_
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0.04.08 Looking forward and back

Throughout the 0.04 Sections, intended as an overview of our linear

tools, notes and comments on secondary and higher instabilities were

interwoven. They prepared the setting for further comments on what can

be said rationally concerning expectations of post-primary instabilities.

Basically, for the class of through-flow systems depicted in Fig O-lb,

the answer is: not much. The various reasons were described earlier,

* especially in Section 0.02.06. The answer for flows typified by Fig 0-

ld is: quite a bit. As described in *Note 1 to the preceding section,

the best guide to this information is the survey of DiPrima and Swinney

(1981).

In the Introduction, the question of imprinting of turbulent shear

layers by the specific sequence of instabilities leading to turbulence

and the possible lingering effect of such imprinting on the turbulence

characteristics was mentioned; it was aimed at the people concerned

with future research in turbulence. In free shear layers (exemplified

by Fig 0-lc. the subsequent turbulent behavior and turbulent restruc-

turing seems to be related to dimensional properties of the inviscid

similarity solutions for these flows. In the first edition of his book

* on turbulent shear layers Townsend demonstrated the existence of simi-

larity solutions for different classes of free turbulent flows without

using the concept of eddy viscosity. However, arguments with eddy

viscosity do not change the dimensionality of the problem. In both
n

cases one is led to the same classification of x growth for the

width, the center-line velocity and the Reynolds number (based on either

viscosity); an easily accessible table is on p 734 of Schlichting (1979).

Two free flows are special: the axisymmetric jet and the two-

dimensional wake. They exhibit a constant Reynolds number. In the

axisymmetric wakes Reynolds number decays as the negative 1/3 power of

x, while Re of mixing layers and two-dimensional jets grow with the

first and one-half powers, respectively. Now, laminar free shear layers

are equally inviscidly unstable; Townsend's dimensional arguments hold
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equally well for the nonlinear stages of each laminar instability. For

the circular jet and the two-dimensional wake, in fact, similarity

solutions of the same dimensionality exist in presence of viscosity!

The full meaning of existence of a similarity solution is not

clear. Do all the nonlinear flows have to approach these solutions

asymptotically in some sense? However, what seems to be clear is that

we must expect different kinds of secondary and higher instabilities for

the axisymmetric wake and the mixing layer. The dimensionality of these

flows decrees it.

The two-dimensional far wake and the axisymmetric far jet in a

sense resemble the laminar flows for which Re = const, discussed in the

preceding *Note 1. In Section 0.02.03 we examined the 2D cylinder wake

at low Re and noted that it decayed altogether; presumably conditions0
were not sufficiently inviscid. As presaged by Taneda's (1959) visual-

ization experiments, it now appears that at Re in excess of about 100,

2D wakes, laminar or turbulent, widen by entrainment in the nonlinear

stages of each instability and that their unsteady large-scale motion

detunes as the width changes. While the energy of this motion decreases

along the layer because of the detuning and viscosity, another inviscid

instability of the inflectional wider wake takes place, on new, larger

scales.

This behavior differs from that of mixing layers on at least

two important counts. The instability does not appear to be subharmonic

and tightly coupled to the preceding instability. It probably would not

be obtainable by a perturbation analysis of the type used by Pierrehum-

bert and Widnall (1982). It does not rely on amalgamation of active

nonlinear vorticity mode units, as does the mixing layer. Secondly it

develops slowly over a large number of wake diameters; that is one

reason why it has not been studied and documented earlier. The mixing

layer instabilities are rapid and vigorous, as befits a shear layer with

the fastest growing Reynolds number. For the wake of nonconstant width,

the constancy of the Reynolds number implies gradual readjustment of

length scales, coupled with proportionately gradual decrease of the

momentum defect. The gradual changes are accelerated during the active

stage of the instabilities.



91

This view represents the combined wisdom extracted from correlated

research of Cimbala and Roshko at California Institute of Technology and

Nagib, DesRuelle, Wlezian, and Way at Illinois Institute of Technology.

Several manuscripts on the research are in preparation at this writing.

The behavior has been observed for several turbulent wakes at moderate

Reynolds numbers. It also provides a plausible explanation for the

discrepancies in measured far-wake similarity scalings published in the

literature, as analyzed by LaRue and Libby. At each restructuring-

instability, the so-called virtual origin of the wake is changed.

The picture seems to be rather consistent for the first exceptional

class, the two-dimensional wakes. For the second exceptional class, it

would be desirable to analyze the few reliable cases of past experiments

on axisymmetric far jets, and perhaps perform new experiments in this

new light. From this viewpoint, also, dimensional considerations con-

strain the mixing layer to have Re - x, and be most unstable, with

increasing scales of instability. The inviscid subharmonic vortex

0 amalgamation of Section 0.03.04 fits the requirements, for both the

laminar and turbulent mixing layers.

It would appear that attention to inviscid scaling in free shear

layers can help to unify the perception of flows that have been con-

* sidered largely as separate special cases.

The remaining class of flows are the boundary layers, the flows

which have been most investigated. In this area the strength of our

linear tools is substantial, although still limited, especially for

three-dimensional surfaces. For use with confidence, G6rtler insta-

bility codes have to be broadened; they also require additional experi-

mental buttressing. Figure 0-la tells us that even two-dimensional

boundary layers are subject to many special conditions, from roughness

to curvature, to pressure gradients and local separation. We have

accumulated a great deal of knowledge on all such problems in recent

years.

to
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* For instance, most of the unifying observations concerning non-

linear effects and higher instabilities, in the 0.02 Sections and in the

Notes in the 0.03 Sections, and the preceding remarks on free shear

layers could not have been made only three years ago. Nevertheless, in

*• some areas our knowledge remains scant and imprecise--for instance, in

the areas of (presumably linear) receptivity to turbulence, sound,

vibrations, etc. Section 0.03.07 outlines areas of outright theoretical

ignorance. Such gaps are covered by ad hoc empirical information

• without unifying concepts. Yet, considering the intrinsic difficulty in

understanding non-equilibrium nonlinear phenomena, the overall progess

has been impressive. To complete the picture, the reader is invited to

reread the Introduction. Comments and suggestions made there should

Qmake much more sense in the light of the totality of the report.

W

0
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* 0.04.09 Addendum for engineers

Logically, the look back at the main import of this report should

end with the preceding section. However, in a research report funded by

* the Air Force, some comments are perhaps in order on the ever-recurring

question posed by engineers: How can this knowledge be applied to

technological problems? The shortest answer is: with very careful

judgment. Utilization of incomplete and partially ad hoc information

* requires considered ad hoc judgment. The degree of care and type of

judgment depend on the specific objectives of the proposed application

and the background and attitudes of the engineers who use the infor-

mation.

To be truly responsive to the question we should recognize three

types of objectives in an engineer's involvement with the transition

problem. They are not mutually exclusive. As engineers, we may wish

(a) to understand transition phenomena as a background for dealing more

*judiciously with everyday problems involving assessment, delay, and

various controls of transition; (b) to devise quantitative methods,

utilizing semi-empirical theory as aids in larger design decisions

before models are built for testing; (c) to predict transition on power-

ful computers for fundamental design decisions.

In connection with (c), E. Reshotko (1976) listed six capabilities

that a method for transition prediction would have to possess before it

could be called rational. It should be able to take into account on a

logical quantitative basis: (1) disturbance environments (nature and

spectra); (2) receptivity; (3) linear amplification (TS, G6rtler,

cross-flow instability); (4) 3D and nonlinear growth, secondary insta-

bilities; (5) turbulent spot formation; and (6) completion of transition

to turbulent flow. All this would be needed, plus careful attention to

the missing links of Section 0.03.07. The need for two levels of com-

puter support to provide accurate boundary layer profiles before embark-

ing on the prediction should not be underestimated; this need was

addressed in *Note 2 on design risks in Section 0.04.05.

6
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* The increased insight described in the present report makes us only

more aware of the complexities in the transition processes and the

multitudes of parameters that modify them. In 1983 the prospects for

capabilities (4) and (5) remain dim. The implications of strange-

* attractor theories are truly relevant here. The sensitivity to initial

conditions in NS systems is such that at stages (4) and (5) the develop-

ments are almost surely "chaotically unpredictable", though nonturbulent.

Our hope is that all the primary instabilities may prove to be

* invariably the slowest ones in the instability sequences. Then we might

be able to rely primarily on our linear tools. If, for instance, the

distance from xcr to x n (the position where nonlinearity becomes

operative) were invariably some 70% of the distance to Xtr, the details

of stages (4) to (6) would not be of much consequence and could be

safely covered by ad hoc empirical factors. Such a situation seems to

exist for the TS instabilities in moderately benign environments.

There seem to be no hard data to verify similar behavior in situations

* where Gbrtler instability or cross-flow instability are dominant.

Our weakest capability may well be associated with (1), the distur-

bance environment. *Notes 2, 4, and 5 in Section 0.03.02 attempt to

convey some of the issues concerning definition and measurements of

these disturbances. Not one laboratory team has yet achieved an evalu-

ation of the disturbance contents in its streams in sufficient detail to

be useful in receptivity research. Under the circumstances, what dis-

turbance environment can an engineer assume for key design conditions?

Even when it is given, the single u'/U. specification is very inadequate

for the judgment required, as illustrated in *Note 4 in Section 0.03.02.

Since Reshotko's 1976 comments, we have recognized more deeply the

implications of the fact that the Navier-Stokes solutions are extremely

sensitive to initial conditions. The solutionsE the sequences of

instabilities along the transition path are therefore extremely sensi-

tive to environmental disturbances; these determine the spatial initial

conditions in through-flow systems. This fact, combined with our lack

of capability (1) to specify the controlling environmental disturbances

- - - - - - -... . . . . . .
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SQ for any design conditions, make the determination of transition inac-

cessible to probabilistic treatment. The situation is foreign to normal

design experience. Transition-conditioned design seems to require a

special design philosophy.

he This state of affairs renders Reshotko's requirements for a ra-

tional prediction technique virtually unattainable. The approach of

type (c), namely to use computerized transition prediction for funda-

mental design decisions, is therefore ill-advised and dangerous. The

*approach (a) follows traditional paths, with the benefit of improving

tools and informa.ion.

Approach (b) aims to take optimal advantage of computers; it there-

fore uses linear theory to clarify the features of the rate-controlling

initial instability and to guide the design choices. The crucial

aspects of the approach hinge on the limitations of the linear theory

and the reliability of the empirical rules supplementing the theory.

The streams of data and graphs pouring out of computers have a way of

*making them seem much more real than the many underlying assumptions

warrant. They tend to induce intuitive appreciation of a computer

transition behavior which is partly fictitious; they distort features

governed by nonlinearity and the empirical rules.

*Q A common version of approach (b) is a modifed e method, originally

proposed by A. M. 0. Smith for TS-initiated instabilities alone. In its

prediction form, really approach (c), track is kept of the total ampli-

fication of waves of different frequencies along the surface. When one

of the amplitudes has increased by a predetermined factor en from its

value on the neutral curve, transition is said to begin; see Jaffe & OS

(1970). Smith's 1956 collection of supporting data from wind tunnels

and flight tests on varied shapes showed n varying from 4.2 to 20.9 at

fstart of measured transition, depending on pressure gradients and free-

stream disturbances. (Smith quotes values of n of 4.2 and 18.6 for an

adverse and a favorable pressure gradient, respectively, from the same

tunnel with low disturbances judged by 1943 standards!) These specific

historical examples suggest that it takes an act of faith to trust some



96

"average" fixed n to characterize the complex processes in transition.

Values of n from 9 to 11 became popular with many engineers "because we

have nothing better". Very few took the time to study the detailed

arguments in Smith and Gamberoni (1956).

Smith actually started with Liepmann's nonlinear criterion of

maximal TS Reynolds stress growing to the level of laminar shear stress

at the wall, combined with reasonable scaling laws. The Reynolds stress

depends specifically on the initial value of the fluctuations induced by

free-stream disturbances. He wrote in the 1956 report, "Therefore a

careful evaluation... demands at least a frequency spectrum to supply

data on initial values of disturbance. A mean value of u'/U is unsat-

isfactory...". His efforts took a tangential approach for the very

reasons stressed here: the lack of knowledge of environmental distur-

bances and associated receptivities. Without such knowledge, linear

theory can yield only dimensionless ratios.

Yet such ratios represent a cumulative measure of the strength of

the instability at any pretransition Re6 (x). In Section 0.04.04 we

gained useful insight from comparisons of local amplification rates. A

procedure that takes into account the shape of the ridge of amplifica-

tion and discloses the most amplified disturbance up to any Re, station

clearly provides a better measure of the character and strength of the

instability.

A concrete example may be helpful. Allowing for an internalized

spectrum at the neutral curve with fluctuation u'/Hz of, say,

0.00007U /Hz, a cumulative growth factor of e5 %' 150 would place the

most dangerous frequency at a stage comparable to that at station 170 in

the bottom photograph of Fig 0-11. Evidence from ONERA-Toulouse, dis-

cussed in Chapter 3 of the Guide, suggests quite strongly that the

disturbance spectrum within the boundary layer decays surprisingly fast

in the stable regions up to the neutral curve. This implies that free-

stream disturbances can be quite large and still yield the above initial

level in the most dangerous frequency at the neutral position. The
5point of the concrete example is to convince the reader that a safe e
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level can be chosen for numerical design experimentation. For instance,
5

using e as an allowable upper limit, together with other desiderata, an

airfoil shape could be designed. Two-dimensional laminar-flow airfoils

could be redesigned in this manner, if need be, and if a reliable and

* practical way of solving the insect and service-conditioned roughness

problem were found; see *Note 2 in Section 0.04.05.

The problem is more complicated for three-dimensional boundary

layers. Oblique waves, steady or oscillatory, can amplify faster than

* the TS waves with fronts normal to the edge velocity in Fig 0-12. Also

the direction of propagation can change with x and z. Obviously the

process of comparing cumulative growths up to a given x,z position for

different frequencies and different wave orientations is expensive.

(Remember also the need for the other two supporting computer programs

before the instability code can be applied--see *Note 2 in Section

0.04.05. They would be needed with each design change of shape.) The

overriding question, however, is the rationality and safety of the

• design procedure. For instance: Are nonlinear thresholds in two-

dimensional and three-dimensional instabilities comparable? Should the

same n be used?

This fictitious example illustrates both the nature and the power

* of the en method when used in approach (b). It certainly represents a

valuable advance over approach (a). Used with judgment, it is rational,

despite the intrinsic uncertainties in the transition processes.

This outlook cannot be found in the open literature. Over the

years, the preceding ruminations have been the subject of many a philo-

sophical night session among devotees of transition lore. Perhaps it is

time to put the gist of them down on paper as a general message from the

old guard to the neophyte transitionists.

W
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* TABLE I

Temporally and Spatially Varying Physical Disturbances

Temporal gave Spatial Rave

v Re {v (y)e (r e wv = Re  { i ( rrt) e -I

Fourier parameter a = r  W r

eigenvalue u(CL,R( = r + iwi = C. +

phase velocity cr = wr/ar Cr wr/C'r

group velocity cg =c ) (Owrr/'r) ,

* amplif'icat ion rate

, i = LrCi > 0 for instability -Oi > 0 for instability

total amplification

loge (A2/A1) = 2 dt loge (A2 /A1 ) = - d' OidIJtIoge tlo e

- 1 -1

1 J rC-i dx by Gaster

c 9 Transformation

initial data given along x-axis initial data given along t-axis

Wi( T ) _ ,r

Gaster Transformation: CXr(T) = r(S) , wr(T) = Wr(S) . -I(T) = - ( r " These

* L relations hold to order ( Ma a).

0j. . -- - -.. -.--
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Fig 0-17 Neutral curves for Falkner-Skan boundary layers.
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Fig 0-22 Curves of constant amplification rate as a function of Gbrtler
number, G = U.6 r/V "'6r, and wavenumber, ct, for the Blasius boundary
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Fig 0-24 Mach number inhibition of upstreami influence in a self-excited wake

generated by a flat plate normal to the stream.
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Fig 0-25 Neutral curves of Gartler instability for the

Falkner-Skan boundary layers with parameter 6.
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